MIXED TYPE OF FUNCTIONAL EQUATION IN MATRIX NORMED SPACES

R. MURALI ${ }^{1}$ AND V. VITHYA ${ }^{2}$
1,2 Department of Mathematics, Sacred Heart College, Tirupattur - 635 601, TamilNadu, India.
${ }^{1}$ shcrmurali@yahoo.co.in, ${ }^{2}$ viprutha26@gmail.com,

Abstract

Using the fixed point method, we establish some stability results relating to the following mixed type additive-Quadratic functional equation $g(-u+2 v)+2[g(3 u-2 v)+g(2 u+v)-g(v)-g(v-u)]=3[g(u+v)+g(u-v)+g(-u)]+4 g(2 u-v)$

in matrix normed spaces.

1. Introduction and Preliminaries

A basic question in the theory of functional equations is as follows: When is it true that a function, which approximately satisfies a functional equation must be close to an act solution of the equation? If the problem accepts a solution, we say the equation is stable. The first stability problem concerning group homo morphisms was raised by Ulam [23] in 1940 and affirmatively solved by Hyers [9] . The result of Hyers was generalized by Aoki [1 for approximate additive mappings and by Rassias [17] for approximate linear mappings by allowing the difference Cauchy equation $\|f(x+y)-f(x)-f(y)\|$ to be controlled by $\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$. In 1994, a generalization of the Rassias theorem was obtained by Gavruta [7] who replaced $\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\psi(x, y)$. In addition, Rassias [18]-[21] generalized the Hyers stability result by introducing two weaker conditions controlled by a product of different powers of norms and a mixed product sum of powers of norms, respectively.

The abstract characterization given for linear spaces of bounded Hilbert space operators in terms of matricially normed spaces [22] implies that quotients, mapping spaces and various tensor products of operator spaces may be treated as operator spaces. Owing this result, the theory of operator spaces is having a increasingly significant effect on operator algebra theory (see [5]).

The proof given in [22] appealed to the theory of ordered operator spaces [3]. Effros and Ruan [6] showed that one can give a purely metric proof of this important theorem by using a technique of Pisier [16] and Haagerup [8] (as modified in [4]).
Recently, J. R. Lee et al [13] researched the Ulam stability of Cauchy functional equation and quadratic functional equation in matrix normed spaces. This terminology may also be applied to

[^0]DBCY Publication
Journal of Pure and Applied Mathematics Volume: 01, Issue: 01 July 2021, Page No. 1-8 ISSN: XXX-XXXX
the cases of other functional equations [10, 11, 12, 14, 24]. Here our purpose is to investigate to some stability result for the following equation

$$
\begin{equation*}
g(-u+2 v)+2[g(3 u-2 v)+g(2 u+v)-g(v)-g(v-u)]=3[g(u+v)+g(u-v)+g(-u)]+4 g(2 u-v) \tag{1}
\end{equation*}
$$

in matrix normed spaces by using the fixed point method.

2. General Solution of Mixed Type Functional Equation (1)

Lemma 1. Let \mathcal{G} and \mathcal{H} be real vector spaces. If an odd mapping $g: \mathcal{G} \rightarrow \mathcal{H}$ satisfies (1), then g is additive.

Proof. Suppose that g is an odd mapping, then the equation (1) is equivalent to

$$
\begin{equation*}
-g(u-2 v)+2[g(3 u-2 v)+g(2 u+v)-g(v)]=3[g(u+v)-g(u)]+g(u-v)+4 g(2 u-v) \tag{2}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Put $u=u+v$ in (2), we obtain

$$
\begin{equation*}
-g(u-v)+2[g(3 u+v)+g(2 u+3 v)-g(v)]=3[g(u+2 v)-g(u+v)]+g(u)+4 g(2 u+v) \tag{3}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Setting $(u, v)=(u+v,-v)$ in (3), we obtain

$$
\begin{equation*}
-g(u+2 v)+2[g(3 u+2 v)+g(2 u-v)+g(v)]=3[g(u-v)-g(u)]+g(u+v)+4 g(2 u+v) \tag{4}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Subtracting (3) and (4), and then dividing the resulting equation by 2 , one gets

$$
\begin{equation*}
-g(u+2 v)+g(u-v)+g(2 u+3 v)-g(3 u+2 v)+g(3 u+v)-g(2 u-v)=-2 g(u+v)+2 g(u)+2 g(v) \tag{5}
\end{equation*}
$$

$\forall u, v \in \mathcal{G}$. Interchanging $u=v$ and $v=u$ in (5) and then adding the resulting equation to (5), one gets

$$
\begin{equation*}
-g(u+2 v)-g(2 u+v)+g(3 u+v)+g(u+3 v)-g(2 u-v)+g(u-2 v)=-4 g(u+v)+4 g(u)+4 g(v) \tag{6}
\end{equation*}
$$

Put $u=u-v$ in (6), we obtain

$$
\begin{equation*}
-g(u+v)-g(2 u-v)+g(3 u-2 v)+g(u+2 v)-g(2 u-3 v)+g(u-3 v)=-4 g(u)+4 g(u-v)+4 g(v) \tag{7}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Setting $(u, v)=(u,-v)$ in (7), we obtain

$$
\begin{equation*}
-g(u-v)-g(2 u+v)+g(3 u+2 v)+g(u-2 v)-g(2 u+3 v)+g(u+3 v)=-4 g(u)+4 g(u+v)-4 g(v) \tag{8}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Adding (7) and (8), we get

$$
\begin{equation*}
-g(u+2 v)-g(2 u+v)+g(3 u+v)+g(u+3 v)-g(2 u-v)+g(u-2 v)=-2 g(u)+2 g(u+v)-2 g(v) \tag{9}
\end{equation*}
$$

Subtracting (9) and (6), and then dividing the resulting equation by 6 , one gets

$$
g(u+v)=g(u)+g(v)
$$

Lemma 2. Let \mathcal{G} and \mathcal{H} be real vector spaces. If an even mapping $g: \mathcal{G} \rightarrow \mathcal{H}$ satisfies (1), then g is quadratic.

DBCY Publication

Proof. Suppose that g is an even mapping, then the equation (1) is equivalent to

$$
\begin{equation*}
g(u-2 v)+2[g(3 u-2 v)+g(2 u+v)-g(v)]=3[g(u+v)+g(u)]+5 g(u-v)+4 g(2 u-v) \tag{10}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Put $u=u+v$ in 10 and $v=u+v$ in 10) and then comparing the two resulting equation, one gets

$$
\begin{equation*}
2 g(u)+4 g(u+2 v)-2 g(2 u+3 v)=-g(u+v)+5 g(u-v)+3 g(v)-g(2 u+v)-2 g(u-2 v) \tag{11}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Interchanging $u=v$ and $v=u$ in 11, we obtain

$$
\begin{equation*}
2 g(v)+4 g(2 u+v)-2 g(3 u+2 v)=-g(u+v)+5 g(u-v)+3 g(u)-g(u+2 v)-2 g(2 u-v) \tag{12}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Put $v=-v$ in(12), we get

$$
\begin{equation*}
2 g(v)+4 g(2 u-v)-2 g(3 u-2 v)=-g(u-v)+5 g(u+v)+3 g(u)-g(u-2 v)-2 g(2 u+v) \tag{13}
\end{equation*}
$$

Subtracting 13 and 10 , and then dividing the resulting equation by 2 , one gets

$$
\begin{equation*}
2 g(v)+4 g(2 u-v)-2 g(3 u-2 v)=-3 g(u-v)+g(u+v) \tag{14}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Setting $(u, v)=(u+v, v)$ in (14), we get

$$
\begin{equation*}
g(u+2 v)+2[g(3 u+v)-g(v)]=3 g(u)+4 g(2 u+v) \tag{15}
\end{equation*}
$$

Setting $(u, v)=(u, v-u)$ in 15, we get

$$
\begin{equation*}
g(-u+2 v)+2[g(2 u+v)-g(v-u)]=3 g(u)+4 g(u+v) \tag{16}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Setting $(u, v)=(u,-v)$ in (16), we obtain

$$
\begin{equation*}
g(u+2 v)+2[g(2 u-v)-g(u+v)]=3 g(u)+4 g(u-v) \tag{17}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Replacing u by v and v by u in 16, we obtain that

$$
\begin{equation*}
g(2 u-v)+2[g(u+2 v)-g(u-v)]=3 g(v)+4 g(u+v) \tag{18}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Combining (17) and (18), and then divided by 3, one gets

$$
\begin{equation*}
g(u+2 v)+g(2 u-v)=g(u)+g(v)+2 g(u+v)+2 g(u-v) \tag{19}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Subtracting $\sqrt[17]{18}$ from, and then adding the resulting equation 19 , one gets

$$
\begin{equation*}
g(u+2 v)+g(u)=2 g(v)+2 g(u+v) \tag{20}
\end{equation*}
$$

for all $u, v \in \mathcal{G}$. Setting $(u, v)=(u-v, v)$ in 20 , we arrive at $g(u+v)+g(u-v)=2 g(u)+2 g(v)$. This completes the proof.

Throughout this paper, let $\left(X,\|\cdot\|_{n}\right)$ be a matrix normed space, $\left(Y,\|\cdot\|_{n}\right)$ be a matrix Banach space and let n be a fixed positive integer.

For a mapping $f: X \rightarrow Y$, define $\mathcal{M} f: X^{2} \rightarrow Y$ and $\mathcal{M} g_{n}: M_{n}\left(X^{2}\right) \rightarrow M_{n}(Y)$ by,

$$
\begin{gathered}
\mathcal{M} g(p, q)=g(-p+2 q)+2[g(3 p-2 q)+g(2 p+q)-g(q)-g(q-p)] \\
\\
-3[g(p+q)+g(p-q)+g(-p)]-4 g(2 p-q), \\
\mathcal{M} g_{n}\left(\left[x_{i j}\right],\left[y_{i j}\right]\right)=g\left(\left[-x_{i j}+2 y_{i j}\right]\right)+2\left[g\left(\left[3 x_{i j}-2 y_{i j}\right]\right)+g\left(\left[2 x_{i j}+y_{i j}\right]\right)-g\left(\left[y_{i j}\right]\right)-g\left(\left[y_{i j}-x_{i j}\right]\right)\right] \\
\\
-3\left[g\left(\left[x_{i j}+y_{i j}\right]\right)+g\left(\left[x_{i j}-y_{i j}\right]\right)+g\left(\left[-x_{i j}\right]\right)\right]-4 g\left(\left[2 x_{i j}-y_{i j}\right]\right),
\end{gathered}
$$

for all $p, q \in X$ and all $x=\left[x_{i j}\right], y=\left[y_{i j}\right] \in M_{n}(X)$.

3. Generalized Hyers-Ulam Stability of (1): odd Case

Theorem 3. Let $l= \pm 1$ be fixed and let $\psi: X^{2} \rightarrow[0, \infty)$ be a function such that there exists a $\tau<1$ with

$$
\begin{equation*}
\psi(p, q) \leq 2^{l} \tau \psi\left(\frac{p}{2^{l}}, \frac{q}{2^{l}}\right) \tag{21}
\end{equation*}
$$

for all $a, b \in X$. Let $g: X \rightarrow Y$ be an odd mapping satisfying $g(0)=0$ and

$$
\begin{equation*}
\left\|\mathcal{M} f_{n}\left(\left[x_{i j}\right],\left[y_{i j}\right]\right)\right\| \leq \sum_{i, j=1}^{n} \psi\left(x_{i j}, y_{i j}\right) \quad \forall x=\left[x_{i j}\right], y=\left[y_{i j}\right] \in M_{n}(X) \tag{22}
\end{equation*}
$$

Then there exists a unique additive mapping $\mathcal{A}_{d}: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f_{n}\left(\left[x_{i j}\right]\right)-\mathcal{A}_{d n}\left(\left[x_{i j}\right]\right)\right\|_{n} \leq \sum_{i, j=1}^{n} \frac{\tau^{\left(\frac{1-l}{2}\right)}}{2|1-\tau|} \psi\left(0, x_{i j}\right) \quad \forall x=\left[x_{i j}\right] \in M_{n}(X) \tag{23}
\end{equation*}
$$

Proof. Put $n=1$ in 22, we get

$$
\begin{equation*}
\|\mathcal{M}(p, q)\| \leq \psi(p, q) \quad \forall p, q \in X \tag{24}
\end{equation*}
$$

Letting $p=0$ and $q=p$ in (24), we have

$$
\begin{array}{cc}
\|f(2 p)-2 f(p)\| \leq \frac{1}{2} \psi(0, p) & \forall p \in X . \\
\text { So } \quad\left\|f(p)-\frac{1}{2^{l}} f\left(2^{l} p\right)\right\| \leq \frac{\tau^{\left(\frac{1-l}{2}\right)}}{2} \psi(0, p) & \forall p \in X . \tag{26}
\end{array}
$$

Let $\mathcal{T}=\{f: X \rightarrow Y\}$ and introduce the generalized metric ρ on \mathcal{T} as follows:

$$
\rho(f, g)=\inf \left\{\iota \in \mathbb{R}_{+}:\|f(p)-g(p)\| \leq \iota \psi(0, p), \forall p \in X\right\}
$$

It is easy to check that (\mathcal{T}, ρ) is a complete generalized metric (see also [15).
Define the mapping $\mathcal{E}: \mathcal{T} \rightarrow \mathcal{T}$ by $\mathcal{E}(p)=\frac{1}{2^{l}} f\left(2^{l} p\right)$ for all $f \in \mathcal{T}$ and $p \in X$. Let $f, g \in \mathcal{T}$ and ι be an arbitrary constant with $\rho(f, g)=\iota$. Then $\|f(p)-g(p)\| \leq \iota \psi(0, p)$ for all $p \in X$. Hence

$$
\|\mathcal{E} f(p)-\mathcal{E} g(p)\|=\left\|\frac{1}{2^{l}} f\left(2^{l} p\right)-\frac{1}{2^{l}} g\left(2^{l} p\right)\right\| \leq \tau \psi(0, p) \text { for all } p \in X
$$

This means that \mathcal{E} is a contractive mapping with lipschitz constant $L=\tau<1$.
It follows from 26 that $\rho(f, \mathcal{E} f) \leq \frac{\tau^{\left(\frac{1-l}{2}\right)}}{|2|}$. By Theorem 2.2 in [2], there exists a mapping \mathcal{A}_{d} : $X \rightarrow Y$ which satisfying: $1 . \mathcal{A}_{d}$ is a fixed point of \mathcal{E}, i.e., $\mathcal{A}_{d}(2 p)=2 \mathcal{A}_{d}(p)$
2. $\rho\left(\mathcal{E}^{k} f, \mathcal{A}_{d}\right) \rightarrow 0$ as $k \rightarrow \infty$. This implies that $\lim _{k \rightarrow \infty} \frac{1}{2^{k l}} f\left(2^{k l} p\right)=\mathcal{A}_{d}(p) \quad \forall p \in X$.
3. $\rho\left(f, \mathcal{A}_{d}\right) \leq \frac{1}{1-\tau} \rho(f, \mathcal{E} f)$, this implies the inequality

$$
\begin{equation*}
\left\|f(p)-A_{d}(p)\right\| \leq \frac{\tau^{\frac{1-l}{2}}}{2|1-\tau|} \psi(0, p) \tag{27}
\end{equation*}
$$

It follows from (21) and 24) that

$$
\left\|\mathcal{M} \mathcal{A}_{d}(p, q)\right\|=\lim _{k \rightarrow \infty} \frac{1}{2^{l k}}\left\|\mathcal{M} f\left(2^{l k} p, 2^{l k} q\right)\right\| \leq \lim _{k \rightarrow \infty} \frac{1}{2^{l k}} \psi\left(2^{l k} p, 2^{l k} q\right) \leq \lim _{k \rightarrow \infty} \frac{2^{l k} \tau^{k}}{2^{l k}} \psi(p, q)=0
$$

Therefore
$-\mathcal{A}_{d}(p-2 q)+2\left[\mathcal{A}_{d}(3 p-2 q)+\mathcal{A}_{d}(2 p+q)-\mathcal{A}_{d}(p)\right]-3\left[\mathcal{A}_{d}(p+q)-\mathcal{A}_{d}(p)\right]+\mathcal{A}_{d}(p-q)-4 \mathcal{A}_{d}(2 p-q)=0$. Thus, the function \mathcal{A}_{d} satisfies additive. Using Lemma 2.1 in [13] and (27), we get 23). Thus $\mathcal{A}_{d}: X \rightarrow Y$ is a unique additive mapping.

Corollary 1. Let $l= \pm 1$ be fixed and let r, ς be non-negative real numbers with $r \neq 1$. Let $g: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\left\|\mathcal{M} f_{n}\left(\left[x_{i j}\right],\left[y_{i j}\right]\right)\right\|_{n} \leq \sum_{i, j=1}^{n} \varsigma\left(\left\|x_{i j}\right\|^{r}+\left\|y_{i j}\right\|^{r}\right) \quad \forall x=\left[x_{i j}\right], y=\left[y_{i j}\right] \in M_{n}(X) \tag{28}
\end{equation*}
$$

Then there exists a unique additive mapping $\mathcal{A}_{d}: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f_{n}\left(\left[x_{i j}\right]\right)-\mathcal{A}_{d n}\left(\left[x_{i j}\right]\right)\right\|_{n} \leq \sum_{i, j=1}^{n} \frac{\varsigma}{\left|2-2^{r}\right|}\left\|x_{i j}\right\|^{r} \quad \forall x=\left[x_{i j}\right] \in M_{n}(X) \tag{29}
\end{equation*}
$$

Proof. The proof follows from Theorem 3 by taking $\psi(p, q)=\varsigma\left(\|p\|^{r}+\|q\|^{r}\right)$ for all $p, q \in X$. Then we can choose $\tau=2^{l(r-1)}$, and we get the desired result.

4. Generalized Hyers-Ulam Stability of (1): Even Case

Theorem 4. Let $l= \pm 1$ be fixed and let $\psi: X^{2} \rightarrow[0, \infty)$ be a function such that there exists a $\tau<1$ with

$$
\begin{equation*}
\psi(p, q) \leq 4^{l} \tau \psi\left(\frac{p}{2^{l}}, \frac{q}{2^{l}}\right) \tag{30}
\end{equation*}
$$

for all $p, q \in X$. Let $g: X \rightarrow Y$ be an even mapping satisfying $g(0)=0$ and

$$
\begin{equation*}
\left\|\mathcal{M} g_{n}\left(\left[x_{i j}\right],\left[y_{i j}\right]\right)\right\| \leq \sum_{i, j=1}^{n} \psi\left(x_{i j}, y_{i j}\right) \quad \forall x=\left[x_{i j}\right], y=\left[y_{i j}\right] \in M_{n}(X) \tag{31}
\end{equation*}
$$

Then there exists a unique quadratic mapping $\mathcal{Q}_{d}: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|g_{n}\left(\left[x_{i j}\right]\right)-\mathcal{Q}_{d n}\left(\left[x_{i j}\right]\right)\right\|_{n} \leq \sum_{i, j=1}^{n} \frac{\tau^{\left(\frac{1-l}{2}\right)}}{4|1-\tau|} \psi\left(0, x_{i j}\right) \quad \forall x=\left[x_{i j}\right] \in M_{n}(X) \tag{32}
\end{equation*}
$$

Proof. Put $n=1$. Then (31) is equivalent to

$$
\begin{equation*}
\|\mathcal{M}(p, q)\| \leq \psi(p, q) \quad \forall p, q \in X \tag{33}
\end{equation*}
$$

Setting $p=0$ and $q=p$ in (33), we get

$$
\begin{equation*}
\|g(2 p)-4 g(p)\| \leq \frac{1}{2} \psi(0, p) \quad \forall p \in X \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
\text { So } \quad\left\|g(p)-\frac{1}{4^{l}} g\left(2^{l} p\right)\right\| \leq \frac{\tau^{\left(\frac{1-l}{2}\right)}}{4} \psi(0, p) \quad \forall p \in X \tag{35}
\end{equation*}
$$

Let (\mathcal{T}, ρ) be the generalized metric space defined in the proof of Theorem 3 . Now we consider the linear mapping $\mathcal{E}: \mathcal{T} \rightarrow \mathcal{T}$ defined by $\mathcal{E}(p)=\frac{1}{4^{l}} f\left(2^{l} p\right)$ for all $f \in \mathcal{T}$ and $p \in X$.
It follows from $\sqrt{35}$ that $\rho(f, \mathcal{E} f) \leq \frac{\tau^{\left(\frac{1-l}{2}\right)}}{|4|}$. So $\rho\left(f, Q_{d}\right) \leq \frac{\tau^{\frac{1-l}{2}}}{4|1-\tau|}$
The rest of the proof is similar to the proof of Theorem 3
Corollary 2. Let $l= \pm 1$ be fixed and let r, ς be non-negative real numbers with $r \neq 2$. Let $g: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\left\|\mathcal{M} g_{n}\left(\left[x_{i j}\right],\left[y_{i j}\right]\right)\right\|_{n} \leq \sum_{i, j=1}^{n} \varsigma\left(\left\|x_{i j}\right\|^{r}+\left\|y_{i j}\right\|^{r}\right) \quad \forall x=\left[x_{i j}\right], y=\left[y_{i j}\right] \in M_{n}(X) \tag{36}
\end{equation*}
$$

Then there exists a unique quadratic mapping $\mathcal{Q}_{d}: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|g_{n}\left(\left[x_{i j}\right]\right)-\mathcal{Q}_{d n}\left(\left[x_{i j}\right]\right)\right\|_{n} \leq \sum_{i, j=1}^{n} \frac{\varsigma}{\left|4-2^{r}\right|}\left\|x_{i j}\right\|^{r} \quad \forall x=\left[x_{i j}\right] \in M_{n}(X) \tag{37}
\end{equation*}
$$

Proof. The proof follows from Theorem 4 by taking $\psi(p, q)=\varsigma\left(\|p\|^{r}+\|q\|^{r}\right)$ for all $p, q \in X$. Then we can choose $\tau=2^{l(r-2)}$, and one can easily obtain the necessary result.

5. J.M. Rassias Stability controlled by the mixed product-sum of powers of norms

The following corollary gives the Ulam J Rassias stability for the additive-quadratic functional equation (11). This stability involving the mixed product of sum of powers of norms.

Corollary 3. Let $l= \pm 1$ be fixed and let r, ς be non-negative real numbers with $r=v+w \neq 1$. Let $g: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\left\|\mathcal{M} g_{n}\left(\left[x_{i j}\right],\left[y_{i j}\right]\right)\right\|_{n} \leq \sum_{i, j=1}^{n} \varsigma\left(\left\|x_{i j}\right\|^{v} \cdot\left\|y_{i j}\right\|^{w}+\left\|x_{i j}\right\|^{v+w}+\left\|y_{i j}\right\|^{v+w}\right) \tag{38}
\end{equation*}
$$

for all $x=\left[x_{i j}\right], y=\left[y_{i j}\right] \in M_{n}(X)$. Then there exists a unique additive mapping $\mathcal{A}_{d}: X \rightarrow Y$ such that (29.)
Proof. The proof follows from Theorem 3 by taking $\psi(p, q)=\varsigma\left(\|p\|^{v} \cdot\|q\|^{w}+\|p\|^{v+w}+\|q\|^{v+w}\right)$ for all $p, q \in X$. Then we can choose $\tau=2^{l(r-1)}$, and we can obtain the required result.

Corollary 4. Let $l= \pm 1$ be fixed and let r, ς be non-negative real numbers with $r=v+w \neq 2$. Let $g: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\left\|\mathcal{M} g_{n}\left(\left[x_{i j}\right],\left[y_{i j}\right]\right)\right\|_{n} \leq \sum_{i, j=1}^{n} \varsigma\left(\left\|x_{i j}\right\|^{v} \cdot\left\|y_{i j}\right\|^{w}+\left\|x_{i j}\right\|^{v+w}+\left\|y_{i j}\right\|^{v+w}\right) \tag{39}
\end{equation*}
$$

for all $x=\left[x_{i j}\right], y=\left[y_{i j}\right] \in M_{n}(X)$. Then there exists a unique quadratic mapping $\mathcal{Q}_{d}: X \rightarrow Y$ such that (37).
Proof. The proof follows from Theorem 4 by taking $\psi(p, q)=\varsigma\left(\|p\|^{v} \cdot\|q\|^{w}+\|p\|^{v+w}+\|q\|^{v+w}\right)$ for all $p, q \in X$.

6. Conclusion

Here, we found a general solution of a mixed type of Additive-quadratic functional equation (1) and established the generalized Hyers-Ulam stability and J. M. Rassias stability of the functional equation (1) in matrix normed spaces by using the fixed point method.

Acknowledgement

The authors are very grateful to the referees for their valuable suggestions and opinions.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[2] L. Cadariu, V. Radu, Fixed points and the stability of Jensens functional equation, J. Inequal. Pure Appl. Math., 4(1) (2003), 1-15.
[3] M. D. Choi, E. Effros, Injectivity and operator spaces, J. Funct. Anal., 24 (1977), 156-209.
[4] E. Effros, Z. J. Ruan, On matricially normed spaces, Pac. J. Math., 132 (1988), 243-264.
[5] E. Effros, Z.-J. Ruan, On approximation properties for operator spaces, Internat. J. Math. 1 (1990), 163-187.
[6] E. Effros, Z. J. Ruan, On the abstract characterization of operator spaces, Proc. Am. Math. Soc., 119 (1993), 579-584.
[7] P. Gavruta, A generalization of the Hyers-Ulam Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[8] U. Haagerup, Decomp. of completely bounded maps, unpublished manuscript.
[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224.
[10] J. R. Lee, D. Y. Shin and C. Park, An additive functional inequality in matrix normed spaces, Mathematical inequalities and applications, 16, no. 4 (2013), 1009-1022.
[11] J. Lee, D. Shin and C. Park, An AQCQ- Functional Equation in Matrix Banach Spaces, Advances in Difference Equations, 2013:146 (2013), 1-15.
[12] J. Lee, D. Shin and C. Park, Hyers-Ulam Stability of Functional Equations in Matrix Normed Spaces, Journal of Inequalities and Applications, 2013:22, 1-11.
[13] J. Lee, C. Park and D. Shin, Functional Equations in Matrix Normed Spaces, Proc. Indian Acad. sci., 125(3) (2015), 399-412.
[14] R. Murali and V. Vithya, Hyers-Ulam-Rassias stability of functional equations in matrix normed spaces: A fixed point approach, Assian Journal of Mathematics and Computer Research, 4(3) (2015), 155-163.
[15] D. Mihet and V. Radu, On the Stability of the Additive Cauchy Functional Equation in Random Normed Spaces, J. Math. Anal. Appl., 343 (2008), 567-572.
[16] G. Pisier, Grothendieck's theorem for non-commutative C*-algebras with an appendix on Grothendieck's constants.J. Funct. Anal., 29 (1978), 397-415.
[17] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300.
[18] J. M. Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings, J. Funct. Anal., 46(1) (1982), 126-130.
[19] J. M. Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings, Bull. Sci. Math., 108(4) (1984), 445-446.
[20] J. M. Rassias, On a New Approximation of Approximately Linear Mappings by Linear Mappings, Discuss. Math., 7 (1985), 193-196.
[21] J. M. Rassias, Solution of a Problem of Ulam, J. Approx. Th., 57(3) (1989), 268-273. .
[22] Z. J. Ruan, Subspaces of $C *$-algebras, J. Funct. Anal., 76 (1988), 217-230.
[23] S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork (1964).

DBCY Publication
Journal of Pure and Applied Mathematics Volume: 01, Issue: 01 July 2021, Page No. 1-8

ISSN: XXX-XXXX
[24] Z. Wang and P. K. Sahoo, Stability of an ACQ- Functional Equation in Various Matrix Normed Spaces, J. Nonlinear Sci. Appl., 8 (2015), 64-85.

[^0]: 2010 Mathematics Subject Classification. : 39B52; 39B82; 46L07; 47H10; 47L25.
 Key words and phrases. : Hyers-Ulam stability, fixed point, mixed type additive-quadratic functional equation, matrix normed spaces.

