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Abstract. Using the fixed point method, we establish some stability results relating to the

following mixed type additive-Quadratic functional equation

g(−u+2v)+2[g(3u−2v)+g(2u+v)−g(v)−g(v−u)] = 3[g(u+v)+g(u−v)+g(−u)]+4g(2u−v)

in matrix normed spaces.

1. Introduction and Preliminaries

A basic question in the theory of functional equations is as follows: When is it true that a

function, which approximately satisfies a functional equation must be close to an act solution of

the equation? If the problem accepts a solution, we say the equation is stable. The first stability

problem concerning group homo morphisms was raised by Ulam [23] in 1940 and affirmatively

solved by Hyers [9] . The result of Hyers was generalized by Aoki [1] for approximate additive

mappings and by Rassias [17] for approximate linear mappings by allowing the difference Cauchy

equation ‖f(x+ y)− f(x)− f(y)‖ to be controlled by ε(‖x‖p + ‖y‖p). In 1994, a generalization of

the Rassias theorem was obtained by Gavruta [7] who replaced ε(‖x‖p + ‖y‖p) by a general control

function ψ(x, y). In addition, Rassias [18]-[21] generalized the Hyers stability result by introducing

two weaker conditions controlled by a product of different powers of norms and a mixed product

sum of powers of norms, respectively.

The abstract characterization given for linear spaces of bounded Hilbert space operators in terms

of matricially normed spaces [22] implies that quotients, mapping spaces and various tensor products

of operator spaces may be treated as operator spaces. Owing this result, the theory of operator

spaces is having a increasingly significant effect on operator algebra theory (see [5]).

The proof given in [22] appealed to the theory of ordered operator spaces [3]. Effros and Ruan

[6] showed that one can give a purely metric proof of this important theorem by using a technique

of Pisier [16] and Haagerup [8] (as modified in [4]).

Recently, J. R. Lee et al [13] researched the Ulam stability of Cauchy functional equation and

quadratic functional equation in matrix normed spaces. This terminology may also be applied to
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the cases of other functional equations [10, 11, 12, 14, 24]. Here our purpose is to investigate to

some stability result for the following equation

g(−u+2v)+2[g(3u−2v)+g(2u+v)−g(v)−g(v−u)] = 3[g(u+v)+g(u−v)+g(−u)]+4g(2u−v) (1)

in matrix normed spaces by using the fixed point method.

2. General Solution of Mixed Type Functional Equation (1)

Lemma 1. Let G and H be real vector spaces. If an odd mapping g : G → H satisfies (1), then g

is additive.

Proof. Suppose that g is an odd mapping, then the equation (1) is equivalent to

− g(u− 2v) + 2[g(3u− 2v) + g(2u+ v)− g(v)] = 3[g(u+ v)− g(u)] + g(u− v) + 4g(2u− v), (2)

for all u, v ∈ G. Put u = u+ v in (2), we obtain

− g(u− v) + 2[g(3u+ v) + g(2u+ 3v)− g(v)] = 3[g(u+ 2v)− g(u+ v)] + g(u) + 4g(2u+ v) (3)

for all u, v ∈ G. Setting (u, v) = (u+ v,−v) in (3), we obtain

− g(u+ 2v) + 2[g(3u+ 2v) + g(2u− v) + g(v)] = 3[g(u− v)− g(u)] + g(u+ v) + 4g(2u+ v) (4)

for all u, v ∈ G. Subtracting (3) and (4), and then dividing the resulting equation by 2, one gets

−g(u+2v)+g(u−v)+g(2u+3v)−g(3u+2v)+g(3u+v)−g(2u−v) = −2g(u+v)+2g(u)+2g(v) (5)

∀ u, v ∈ G. Interchanging u = v and v = u in (5) and then adding the resulting equation to (5),

one gets

−g(u+2v)−g(2u+v)+g(3u+v)+g(u+3v)−g(2u−v)+g(u−2v) = −4g(u+v)+4g(u)+4g(v) (6)

Put u = u− v in (6), we obtain

−g(u+v)−g(2u−v)+g(3u−2v)+g(u+2v)−g(2u−3v)+g(u−3v) = −4g(u)+4g(u−v)+4g(v) (7)

for all u, v ∈ G. Setting (u, v) = (u,−v) in (7), we obtain

−g(u−v)−g(2u+v)+g(3u+2v)+g(u−2v)−g(2u+3v)+g(u+3v) = −4g(u)+4g(u+v)−4g(v) (8)

for all u, v ∈ G. Adding (7) and (8), we get

−g(u+2v)−g(2u+v)+g(3u+v)+g(u+3v)−g(2u−v)+g(u−2v) = −2g(u)+2g(u+v)−2g(v) (9)

Subtracting (9) and (6), and then dividing the resulting equation by 6, one gets

g(u+ v) = g(u) + g(v). �

Lemma 2. Let G and H be real vector spaces. If an even mapping g : G → H satisfies (1), then g

is quadratic.
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Proof. Suppose that g is an even mapping, then the equation (1) is equivalent to

g(u− 2v) + 2[g(3u− 2v) + g(2u+ v)− g(v)] = 3[g(u+ v) + g(u)] + 5g(u− v) + 4g(2u− v), (10)

for all u, v ∈ G. Put u = u+ v in (10) and v = u+ v in (10) and then comparing the two resulting

equation, one gets

2g(u) + 4g(u+ 2v)− 2g(2u+ 3v) = −g(u+ v) + 5g(u− v) + 3g(v)− g(2u+ v)− 2g(u− 2v) (11)

for all u, v ∈ G. Interchanging u = v and v = u in (11), we obtain

2g(v) + 4g(2u+ v)− 2g(3u+ 2v) = −g(u+ v) + 5g(u− v) + 3g(u)− g(u+ 2v)− 2g(2u− v) (12)

for all u, v ∈ G. Put v = −v in(12), we get

2g(v) + 4g(2u− v)− 2g(3u− 2v) = −g(u− v) + 5g(u+ v) + 3g(u)− g(u− 2v)− 2g(2u+ v) (13)

Subtracting (13) and (10), and then dividing the resulting equation by 2, one gets

2g(v) + 4g(2u− v)− 2g(3u− 2v) = −3g(u− v) + g(u+ v) (14)

for all u, v ∈ G. Setting (u, v) = (u+ v, v) in (14), we get

g(u+ 2v) + 2[g(3u+ v)− g(v)] = 3g(u) + 4g(2u+ v), (15)

Setting (u, v) = (u, v − u) in (15), we get

g(−u+ 2v) + 2[g(2u+ v)− g(v − u)] = 3g(u) + 4g(u+ v) (16)

for all u, v ∈ G. Setting (u, v) = (u,−v) in (16), we obtain

g(u+ 2v) + 2[g(2u− v)− g(u+ v)] = 3g(u) + 4g(u− v) (17)

for all u, v ∈ G. Replacing u by v and v by u in (16), we obtain that

g(2u− v) + 2[g(u+ 2v)− g(u− v)] = 3g(v) + 4g(u+ v) (18)

for all u, v ∈ G. Combining (17) and (18), and then divided by 3, one gets

g(u+ 2v) + g(2u− v) = g(u) + g(v) + 2g(u+ v) + 2g(u− v) (19)

for all u, v ∈ G. Subtracting (17) from (18), and then adding the resulting equation (19), one gets

g(u+ 2v) + g(u) = 2g(v) + 2g(u+ v) (20)

for all u, v ∈ G. Setting (u, v) = (u− v, v) in (20), we arrive at g(u+ v) + g(u− v) = 2g(u) + 2g(v).

This completes the proof. �

Throughout this paper, let (X, ‖.‖n) be a matrix normed space, (Y, ‖.‖n)be a matrix Banach

space and let n be a fixed positive integer.
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For a mapping f : X → Y , define Mf : X2 → Y and Mgn : Mn(X2)→Mn(Y ) by,

Mg(p, q) = g(−p+ 2q) + 2[g(3p− 2q) + g(2p+ q)− g(q)− g(q − p)]
− 3[g(p+ q) + g(p− q) + g(−p)]− 4g(2p− q),

Mgn([xij ], [yij ]) = g([−xij + 2yij ]) + 2[g([3xij − 2yij ]) + g([2xij + yij ])− g([yij ])− g([yij − xij ])]
− 3[g([xij + yij ]) + g([xij − yij ]) + g([−xij ])]− 4g([2xij − yij ]),

for all p, q ∈ X and all x = [xij ], y = [yij ] ∈Mn(X).

3. Generalized Hyers-Ulam Stability of (1): odd Case

Theorem 3. Let l = ±1 be fixed and let ψ : X2 → [0,∞) be a function such that there exists a

τ < 1 with

ψ(p, q) ≤ 2lτψ(
p

2l
,
q

2l
) (21)

for all a, b ∈ X. Let g : X → Y be an odd mapping satisfying g(0) = 0 and

‖Mfn([xij ], [yij ])‖ ≤
n∑

i,j=1

ψ(xij , yij) ∀ x = [xij ], y = [yij ] ∈Mn(X). (22)

Then there exists a unique additive mapping Ad : X → Y such that

‖fn([xij ])−Adn([xij ])‖n ≤
n∑

i,j=1

τ( 1−l
2 )

2 |1− τ |
ψ(0, xij) ∀ x = [xij ] ∈Mn(X). (23)

Proof. Put n = 1 in (22) , we get

‖M(p, q)‖ ≤ ψ(p, q) ∀ p, q ∈ X. (24)

Letting p = 0 and q = p in (24), we have

‖f(2p)− 2f(p)‖ ≤ 1

2
ψ(0, p) ∀ p ∈ X. (25)

So

∥∥∥∥f(p)− 1

2l
f(2lp)

∥∥∥∥ ≤ τ( 1−l
2 )

2
ψ(0, p) ∀ p ∈ X. (26)

Let T = {f : X → Y } and introduce the generalized metric ρ on T as follows:

ρ(f, g) = inf {ι ∈ R+ : ‖f(p)− g(p)‖ ≤ ιψ(0, p),∀p ∈ X} .

It is easy to check that (T , ρ) is a complete generalized metric (see also [15]).

Define the mapping E : T → T by E(p) = 1
2l
f(2lp) for all f ∈ T and p ∈ X. Let f, g ∈ T and ι be

an arbitrary constant with ρ(f, g) = ι. Then ‖f(p)− g(p)‖ ≤ ιψ(0, p) for all p ∈ X. Hence

‖Ef(p)− Eg(p)‖ =
∥∥ 1
2l
f(2lp)− 1

2l
g(2lp)

∥∥ ≤ τψ(0, p) for all p ∈ X.
This means that E is a contractive mapping with lipschitz constant L = τ < 1.

It follows from (26) that ρ(f, Ef) ≤ τ( 1−l
2 )

|2|
. By Theorem 2.2 in [2], there exists a mapping Ad :

X → Y which satisfying: 1. Ad is a fixed point of E , i.e., Ad(2p) = 2Ad(p)
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2.ρ(Ekf,Ad)→ 0 as k →∞. This implies that lim
k→∞

1
2kl f(2klp) = Ad(p) ∀ p ∈ X.

3. ρ(f,Ad) ≤ 1

1− τ
ρ(f, Ef), this implies the inequality

‖f(p)−Ad(p)‖ ≤ τ
1−l
2

2 |1− τ |
ψ(0, p) (27)

It follows from (21) and (24) that

‖MAd(p, q)‖ = lim
k→∞

1

2lk
∥∥Mf(2lkp, 2lkq)

∥∥ ≤ lim
k→∞

1

2lk
ψ(2lkp, 2lkq) ≤ lim

k→∞

2lkτk

2lk
ψ(p, q) = 0

Therefore

−Ad(p−2q)+2[Ad(3p−2q)+Ad(2p+q)−Ad(p)]−3[Ad(p+q)−Ad(p)]+Ad(p−q)−4Ad(2p−q) = 0.

Thus, the function Ad satisfies additive. Using Lemma 2.1 in [13] and (27), we get (23). Thus

Ad : X → Y is a unique additive mapping. �

Corollary 1. Let l = ±1 be fixed and let r, ς be non-negative real numbers with r 6= 1. Let

g : X → Y be a mapping such that

‖Mfn([xij ], [yij ])‖n ≤
n∑

i,j=1

ς(‖xij‖r + ‖yij‖r) ∀ x = [xij ], y = [yij ] ∈Mn(X). (28)

Then there exists a unique additive mapping Ad : X → Y such that

‖fn([xij ])−Adn([xij ])‖n ≤
n∑

i,j=1

ς

|2− 2r|
‖xij‖r ∀ x = [xij ] ∈Mn(X). (29)

Proof. The proof follows from Theorem 3 by taking ψ(p, q) = ς(‖p‖r + ‖q‖r) for all p, q ∈ X. Then

we can choose τ = 2l(r−1), and we get the desired result. �

4. Generalized Hyers-Ulam Stability of (1): Even Case

Theorem 4. Let l = ±1 be fixed and let ψ : X2 → [0,∞) be a function such that there exists a

τ < 1 with

ψ(p, q) ≤ 4lτψ(
p

2l
,
q

2l
) (30)

for all p, q ∈ X. Let g : X → Y be an even mapping satisfying g(0) = 0 and

‖Mgn([xij ], [yij ])‖ ≤
n∑

i,j=1

ψ(xij , yij) ∀ x = [xij ], y = [yij ] ∈Mn(X). (31)

Then there exists a unique quadratic mapping Qd : X → Y such that

‖gn([xij ])−Qdn([xij ])‖n ≤
n∑

i,j=1

τ( 1−l
2 )

4 |1− τ |
ψ(0, xij) ∀ x = [xij ] ∈Mn(X). (32)

Proof. Put n = 1. Then (31) is equivalent to

‖M(p, q)‖ ≤ ψ(p, q) ∀ p, q ∈ X. (33)

Setting p = 0 and q = p in (33), we get

‖g(2p)− 4g(p)‖ ≤ 1

2
ψ(0, p) ∀ p ∈ X. (34)
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So

∥∥∥∥g(p)− 1

4l
g(2lp)

∥∥∥∥ ≤ τ( 1−l
2 )

4
ψ(0, p) ∀ p ∈ X. (35)

Let (T , ρ) be the generalized metric space defined in the proof of Theorem 3 . Now we consider the

linear mapping E : T → T defined by E(p) = 1
4l
f(2lp) for all f ∈ T and p ∈ X.

It follows from (35) that ρ(f, Ef) ≤ τ( 1−l
2 )

|4|
. So ρ(f,Qd) ≤ τ

1−l
2

4 |1− τ |
The rest of the proof is similar to the proof of Theorem 3. �

Corollary 2. Let l = ±1 be fixed and let r, ς be non-negative real numbers with r 6= 2. Let

g : X → Y be a mapping such that

‖Mgn([xij ], [yij ])‖n ≤
n∑

i,j=1

ς(‖xij‖r + ‖yij‖r) ∀ x = [xij ], y = [yij ] ∈Mn(X). (36)

Then there exists a unique quadratic mapping Qd : X → Y such that

‖gn([xij ])−Qdn([xij ])‖n ≤
n∑

i,j=1

ς

|4− 2r|
‖xij‖r ∀ x = [xij ] ∈Mn(X). (37)

Proof. The proof follows from Theorem 4 by taking ψ(p, q) = ς(‖p‖r + ‖q‖r) for all p, q ∈ X. Then

we can choose τ = 2l(r−2), and one can easily obtain the necessary result. �

5. J.M. Rassias Stability controlled by the mixed product-sum of powers of norms

The following corollary gives the Ulam J Rassias stability for the additive-quadratic functional

equation (1). This stability involving the mixed product of sum of powers of norms.

Corollary 3. Let l = ±1 be fixed and let r, ς be non-negative real numbers with r = v+w 6= 1. Let

g : X → Y be a mapping such that

‖Mgn([xij ], [yij ])‖n ≤
n∑

i,j=1

ς(‖xij‖v . ‖yij‖w + ‖xij‖v+w
+ ‖yij‖v+w

) (38)

for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique additive mapping Ad : X → Y

such that (29).

Proof. The proof follows from Theorem 3 by taking ψ(p, q) = ς(‖p‖v . ‖q‖w + ‖p‖v+w
+ ‖q‖v+w

) for

all p, q ∈ X. Then we can choose τ = 2l(r−1), and we can obtain the required result. �

Corollary 4. Let l = ±1 be fixed and let r, ς be non-negative real numbers with r = v+w 6= 2. Let

g : X → Y be a mapping such that

‖Mgn([xij ], [yij ])‖n ≤
n∑

i,j=1

ς(‖xij‖v . ‖yij‖w + ‖xij‖v+w
+ ‖yij‖v+w

) (39)

for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique quadratic mapping Qd : X → Y

such that (37).

Proof. The proof follows from Theorem 4 by taking ψ(p, q) = ς(‖p‖v . ‖q‖w + ‖p‖v+w
+ ‖q‖v+w

) for

all p, q ∈ X. �
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6. Conclusion

Here, we found a general solution of a mixed type of Additive-quadratic functional equation (1)

and established the generalized Hyers-Ulam stability and J. M. Rassias stability of the functional

equation (1) in matrix normed spaces by using the fixed point method.
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