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Abstract. In this paper, we explore the Ulam - Hyers stability of system of additive functional

equations from a hotel model in Banach Space via classical Hyers Method.

1. Introduction

The stability problem of functional equations initiated from a question of S.M. Ulam [22]

concerning the stability of group homomorphisms. D.H. Hyers [14] contributed a first positive

partial reply to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by T.

Aoki [2] for additive mappings, Th.M. Rassias [21] and J.M. Rassias [18] for linear mappings by

considering an unbounded Cauchy difference. A generalization of all the overhead effects was

achieved by P. Gavruta [13] by replacing the unbounded Cauchy difference by a general control

function in the spirit of Rassias method. In 2008, a special case of Gavruta’s theorem for the

unbounded Cauchy difference was obtained by Ravi etal., [20]] by considering the summation of

both the sum and the product of two norms in the sprit of Rassias approach.

The well-known additive functional equation is

H(u+ v) = H(u) +H(v) (1)

In 1821, it was first solved by A.L. Cauchy in the class of continuous real-valued functions. It is

often called additive Cauchy functional equation in honor of Cauchy (see[17]).
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The various forms of additive functional equations

f(2x− y) + f(x− 2y) = 3f(x)− 3f(y) (2)

f(2x± y ± z) = f(x± y) + f(x± z) (3)

f(x) + f(x) = f(2x) (4)

f(y) = f

(
y + z

2

)
+ f

(
y − z

2

)
(5)

f(x) + f(y + z)− f(x+ y) = f(z); ||f(x) + f(y + z)− f(x+ y)|| ≤ ||f(z)|| (6)

f (ax+ y)− f (x− ay) = (a− 1) f (x) + (1 + a) f (y) (7)

were conferred by D.O. Lee [16], M. Arunkumar [3, 4, 5, 6, 19]. The solution and stability of several

additive functional equations were discussed in [1, 7, 8, 9, 10, 12, 11, 15].

Usually, we take food on the hotels with my friends. One day we got a though that we want

to find which hotel serves fine and tasty food and also we prefer to inform my friends about the

hotels. The quality of the hotel observed by the quality of food, service of the weightier and some

may give tips. We found four types of the following Hotels.

H1 : We went to a first hotel to take food and ordered food. Servers first gave some water and

a handful of chips to eat till arriving the food. After some initially time the food came and they

served charmingly. The food was very tasty. So we decided to help for them and then gave some

tips for them.

H2 : We went to second hotel to take food and ordered food. The food was tasty and they

served pleasantly. But the impression was not as in the first hotel. So we did not help them and

we avoided to give some tips.

H3 : Later we went to a third hotel to take food. But this one was self-serviced. So there were

no servers and there was no need of giving tips. Here also the food was fine.

H4 : Finally we went to fourth hotel. As usual we ordered food. Before arrival of food, the

servers take care us. But the food was not tasty and we did not like it. Even though they served

in good manner we did not gave any tips for them.

Based on the above data, let us have the following assumptions: ui1 denotes the foods; ui2
denotes quality; ui3 denotes service; ui4 denotes giving tips; respectively. If it is satisfactory it

denotes + (PLUS) and not satisfactory it denotes – (MINUS).

Now, we collect the following data, with the help of Binary digits, If good we give 1 (one) and

Bad we give 0 (zero). (for food, quality, service and tips and i = 1, 2, 3, 4.)

Hotel Hi Food (ui1) Quality (ui2) Service (ui3) Tips (ui4) Total Sum Preference

H1 1 1 1 1 4 1 ∗
H2 1 1 1 0 3 2 ∗
H3 1 1 0 0 2 3

H4 1 0 1 0 2 4
Table 1.1
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The above data can be transformed into system of additive functional equations as follows.

H1 (u1 + u2 + u3 + u4) = H1 (u1) +H1 (u2) +H1 (u3) +H1 (u4) (8)

H2 (u1 + u2 + u3 − u4) = H2 (u1) +H2 (u2) +H2 (u3)−H2 (u4) (9)

H3 (u1 + u2 − u3 − u4) = H3 (u1) +H3 (u2)−H3 (u3)−H3 (u4) (10)

H4 (u1 − u2 + u3 − u4) = H4 (u1)−H4 (u2) +H4 (u3)−H4 (u4) (11)

In this paper, we explore the Ulam - Hyers stability of system of additive functional equations (8),

(9), (10), 11) in Banach Space via classical Hyers Method.

2. General Solution

In this section, the authors derived the general solution of additive functional equation (8), (9),

(10), 11) by assuming N and M as real vector space.

Theorem 1. If H : N → M bring about the functional equation (1) if and only if H : N → M

brings the functional equations (8), (9), (10) and 11) respectively.

Proof. For all u, v, u11, u12, u13, u14, u21, u22, u23, u24, u31, u32, u33, u34, u41, u42, u43, u44 ∈ N .

Suppose H : N → M fulfilling the additive functional equation (1.1). Alternating (u, v) by

(0, 0), (u, u), (u, 2u) and (−u, u) in (1.1) and for any c > 0, we obtain

H(0) = 0;H(2u) = 2H(u);H(3u) = 3H(u);H(−u) = −H(u);H(cu) = cH(u); ∀u ∈ N. (1)

Let us take u by u11 + u12 and v by u13 + u14 in(1.1) and take H = H1, we obtain (1.8).

Put (u11, u12, u13, u14) by (0, 0, 0, u24) in (1.8) and take H1 = H2, we get

H2(−u24) = −H2(u24); ∀u24 ∈ N. (2)

Let us take(u11, u12, u13, u14) by (u21, u22, u23,−u24) in (1.8), using (2.2) and take H1 = H2, we

arrive (1.9).

Substituting (u21, u22, u23,−u24) by (0, 0,−u33, 0), (0, 0, 0, u34) in (1.9) and take H2 = H3, we

have

H3(−u33) = −H3(u33), H3(−u44) = −H3(u44); ∀u33, u44 ∈ N. (3)

Let us take (u21, u22, u23, u24) by (u31, u32, u33,−u34) in (1.9), using (2.3) and take H2 = H3, we

arrive (1.10).

Substituting (u31, u32, u33,−u34) by (0,−u42, 0, 0), (0, 0,−u43, 0), (0, 0, 0, u44) in (1.10) and take

H3 = H4, we get

H4(−u42) = −H4(u42), H4(−u43) = −H4(u43), H4(−u44) = −H4(u44);∀u42, u43, u44 ∈ N. (4)

Let us take(u31, u32, u33, u+34) by (u41,−u42,−u43,−u44) in (1.10). Using (2.4) and take H3 = H4,

we obtain (1.11).

Putting (u41, u42, u43, u44) as (u, 0, v, 0) and H4 by H in (1.11), we arrive (1.1) as desired. �

Remark 2. From the above theorem, we see that all the functional equation (1.1), (1.8), (1.9),

(1.10) and (1.11) are equivalent with respect to its solutions.
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3. Stability Results: Hyers Direct Method

To provide stability results for (8), (9), (10), 11) assume that R and S be Banach spaces for

derive the stability results.

From Table 1.1, the quantity of the hotel observed by the quality of food, service of the weightier

and some give tips. If we are not satisfy in tips, service of weightier, quality of food we take that

variable as zero (0) and if we satisfy all we give equal preference to all variables to prove the stability

results.

Theorem 3. Let p = ±1. If H1, H2, H3, H4 : R→ S are functions with inequalities

‖H1 (u1 + u2 + u3 + u4)−H1 (u1)−H1 (u2)−H1 (u3)−H1 (u4)‖
≤ τ1(u11, u12, u13, u14) (1)

‖H2 (u21 + u22 + u23 − u24)−H2 (u21)−H2 (u22)−H2 (u23) +H2 (u24)‖
≤ τ2(u21, u22, u23, u24) (2)

‖H3 (u31 + u32 − u33 − u34)−H3 (u31)−H3 (u32) +H3 (u33) +H3 (u34)‖
≤ τ3(u31, u32, u33, u34) (3)

‖H4 (u41 − u42 + u43 − u44)−H4 (u41) +H4 (u42)−H4 (u43) +H4 (u44)‖
≤ τ4(u41, u42, u43, u44) (4)

where τ1, τ2, τ3, τ4 : R→ S are function fulfilling the conditions

lim
s→∞

τ1(4spu11, 4
spu12, 4

spu13, 4
spu14)

4sp
= 0; lim

s→∞

τ2(3spu21, 3
spu22, 3

spu23, 3
spu24)

3sp
= 0;

lim
s→∞

τ3(2spu31, 2
spu32, 2

spu33, 2
spu34)

2sp
= 0; lim

s→∞

τ4(2spu41, 42spu42, 2
spu43, 2

spu44)

2sp
= 0 (5)

for all u11, u12, u13, u14, u21, u22, u23, u24, u31, u32, u33, u34, u41, u42, u43, u44 ∈ R. Then there exists

a unique additive mappings M1,M2,M3,M4 : R → S fulfilling the functional equations (8), (9),

(10), 11) and

‖H1(u1)−M1(u1)‖ ≤ 1

4

∞∑
q= 1−p

2

τ1 (4qpu1, 4
qpu1, 4

qpu1, 4
qpu1)

4qp
;∀ u1 ∈ R (6)

‖H2(u2)−M2(u2)‖ ≤ 1

3

∞∑
q= 1−p

2

τ2 (3qpu2, 3
qpu2, 3

qpu2, 0)

3qp
;∀ u2 ∈ R (7)

‖H3(u3)−M3(u3)‖ ≤ 1

2

∞∑
q= 1−p

2

τ3 (2qpu3, 2
qpu3, 0, 0)

2qp
;∀ u3 ∈ R (8)

‖H4(u4)−M4(u4)‖ ≤ 1

2

∞∑
q= 1−p

2

τ4 (2qpu4, 0, 2
qpu4, 0)

2qp
;∀ u4 ∈ R; (9)
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where

M1(u1) = lim
s→∞

H1 (4spu1)

4sp
;∀ u1 ∈ R; M2(u2) = lim

s→∞

H2 (3spu2)

3sp
;∀ u2 ∈ R

M3(u3) = lim
s→∞

H3 (2spu3)

2sp
;∀ u3 ∈ R; M4(u4) = lim

s→∞

H4 (2spu4)

2sp
;∀ u4 ∈ R;

respectively.

Proof. Alternating

(u11, u12, u13, u14) = (u1, u1, u1, u1) in (3.1) ;

(u21, u22, u23, u24) = (u2, u2, u2, 0) in (3.2) ;

(u31, u32, u33, u34) = (u3, u3, 0, 0) in (3.3) ;

(u41, u42, u43, u44) = (u4, 0, u4, 0) in (3.4),

we obtain

‖H1(4u1)− 4H1(u1)‖ ≤ τ1(u1, u1, u1, u1);u1 ∈ R; (10)

‖H2(3u2)− 3H2(u2)‖ ≤ τ2(u2, u2, u2, 0);u2 ∈ R; (11)

‖H3(2u3)− 2H3(u3)‖ ≤ τ3(u3, u3, 0, 0);u3 ∈ R; (12)

‖H4(2u4)− 2H4(u4)‖ ≤ τ4(u4, 0, u4, 0);u4 ∈ R. (13)

The above inequalities can be rewritten as∥∥∥∥H1(4u1)

4
−H1(u1)

∥∥∥∥ ≤ τ1(u1, u1, u1, u1)

4
;u1 ∈ R; (14)∥∥∥∥H2(3u2)

3
−H2(u2)

∥∥∥∥ ≤ τ2(u2, u2, u2, 0)

3
;u2 ∈ R; (15)∥∥∥∥H3(2u3)

2
−H3(u3)

∥∥∥∥ ≤ τ3(u3, u3, 0, 0)

2
;u3 ∈ R; (16)∥∥∥∥H4(2u4)

2
−H4(u4)

∥∥∥∥ ≤ τ4(u4, 0, u4, 0)

4
;u4 ∈ R. (17)

Again alternating, u1 by 4u1 and divide 4; u2 by 3u2 and divide 3; u3 by 2u3 and divide 2; u4 by

2u4 and divide 2 in above inequalities, they becomes∥∥∥∥H1(42u1)

42
− H1(4u1)

4

∥∥∥∥ ≤ τ1(4u1, 4u1, 4u1, 4u1)

42
;u1 ∈ R; (18)∥∥∥∥H2(22u2)

32
− H2(3u2)

3

∥∥∥∥ ≤ τ2(3u2, 3u2, 3u2, 0)

32
;u2 ∈ R; (19)∥∥∥∥H3(22u3)

22
− H3(2u3)

2

∥∥∥∥ ≤ τ3(2u3, 2u3, 0, 0)

22
;u3 ∈ R; (20)∥∥∥∥H4(22u4)

22
− H4(2u4)

2

∥∥∥∥ ≤ τ4(2u4, 0, 2u4, 0)

22
;u4 ∈ R. (21)
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From (3.14) and (3.18) ; (3.15) and (3.19) ; (3.16) and (3.20) ; (3.17) and (3.21) using triangular

inequality, we get∥∥∥∥H1(42u1)

42
−H1(u1)

∥∥∥∥ ≤ 1

4

(
τ1(4u1, 4u1, 4u1, 4u1)

4
+ τ1(u1, u1, u1, u1)

)
;u1 ∈ R; (22)∥∥∥∥H2(32u2)

32
−H2(u2)

∥∥∥∥ ≤ 1

3

(
τ2(3u2, 3u2, 3u2, 0)

3
+ τ2(u2, u2, u2, 0)

)
;u2 ∈ R; (23)∥∥∥∥H3(22u3)

22
−H3(u3)

∥∥∥∥ ≤ 1

2

(
τ3(2u3, 2u3, 0, 0)

2
+ τ3(u3, u3, 0, 0)

)
;u3 ∈ R; (24)∥∥∥∥H4(22u4)

22
−H4(u4)

∥∥∥∥ ≤ 1

2

(
τ4(2u4, 0, 2u4, 0)

2
+ τ4(u4, 0, u4, 0)

)
;u4 ∈ R. (25)

The inequalities (3.22), (3.23), (3.24) and (3.25) generalized as follows∥∥∥∥H1 (4su1)

4s
−H1 (u1)

∥∥∥∥ ≤ 1

4

s−1∑
q=0

τ1(4qu1, 4
qu1, 4

qu1, 4
qu1)

4q
;u1 ∈ R; (26)

∥∥∥∥H2 (3su2)

3s
−H2 (u2)

∥∥∥∥ ≤ 1

3

s−1∑
q=0

τ2(3qu2, 3
qu2, 3

qu2, 0)

3q
;u2 ∈ R; (27)

∥∥∥∥H3 (2su3)

3s
−H3 (u3)

∥∥∥∥ ≤ 1

2

s−1∑
q=0

τ3(2qu3, 2
qu3, 0, 0)

2q
;u3 ∈ R; (28)

∥∥∥∥H4 (2su4)

2s
−H4 (u4)

∥∥∥∥ ≤ 1

2

s−1∑
q=0

τ4(2qu4, 0, 2
qu4, 0)

2q
;u4 ∈ R. (29)

By considering u1 as 4lu1 and dividing by 4l in (3.26), u2 as 3lu2 and dividing by 3l in (3.27), u3
as 2lu3 and dividing by 2l in (3.28), u4 as 2lu4 and dividing by 2l in (3.29), one can obtained that

the sequences {
H1(4su1)

4s

}
,

{
H2(3su2)

3s

}
,

{
H3(2su3)

2s

}
,

{
H4(2su4)

2s

}
,

are Cauchy sequences in R and S is complete, there exists a mapping M1,M2,M3,M4 : R → S

such that

M1(u1) = lim
s→∞

H1 (4spu1)

4sp
; M2(u2) = lim

s→∞

H2 (3spu2)

3sp
;

M3(u3) = lim
s→∞

H3 (2spu3)

2sp
; M4(u4) = lim

s→∞

H4 (2spu4)

2sp

for all u1, u2, u3, u4 ∈ R. Assuming

(u11, u12, u13, u14) as (4su11, 4
su12, 4

su13, 4
su14) and divide by 4s in (3.1)

(u21, u22, u23, u24) as (3su21, 3
su22, 3

su23, 3
su24) and divide by 3s in (3.2)

(u31, u32, u33, u34) as (2su31, 2
su32, 2

su33, 2
su34) and divide by 2s in (3.3)

(u41, u42, u43, u44) as (2su41, 2
su42, 2

su43, 2
su44) and divide by 2s in (3.4),
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we arrive the following∥∥∥∥H1 (4su11 + 4su12 + 4su13 + 4su14)

4s

−
{
H1 (4su11)

4s
+
H1 (4su12)

4s
+
H1 (4su13)

4s
+
H1 (4su14)

4s

}∥∥∥∥
≤ τ1 (4su11, 4

su12, 4
su13, 4

su14)

4s
;

∥∥∥∥H2 (3su21 + 3su22 + 3su23 − 3su24)

3s

−
{
H2 (3su21)

3s
+
H2 (3su22)

3s
+
H2 (3su23)

3s
− H2 (3su24)

3s

}∥∥∥∥
≤ τ2 (3su21, 3

su22, 3
su23, 3

su24)

3s
;

∥∥∥∥H3 (2su31 + 2su32 − 2su33 − 2su34)

2s

−
{
H3 (2su31)

2s
+
H3 (2su32)

2s
− H3 (2su33)

2s
− H3 (2su34)

2s

}∥∥∥∥
≤ τ3 (2su31, 2

su32, 2
su33, 2

su34)

2s
;

∥∥∥∥H4 (2su41 − 2su42 + 2su43 − 2su44)

2s

−
{
H4 (2su41)

2s
− H4 (2su42)

2s
+
H4 (2su43)

2s
− H4 (2su44)

2s

}∥∥∥∥
≤ τ4 (2su41, 2

su42, 2
su43, 2

su44)

2s

and let as taking lim s→∞ on both sides of the above inequalities, we see that

M1 (u11 + u12 + u13 + u14) = M1 (u11) +M1 (u12) +M1 (u13) +M1 (u14) ;

M2 (u21 + u22 + u23 − u24) = M2 (u21) +M2 (u22) +M2 (u23)−M2 (u24) ;

M3 (u31 + u32 − u33 − u34) = M3 (u31) +M3 (u32)−M3 (u33)−M3 (u34) ;

M4 (u41 − u42 + u43 − u44) = M4 (u41)−M4 (u42) +M4 (u43)−M4 (u44) ;

for all u11, u12, u13, u14, u21, u22, u23, u24, u31, u32, u33, u34, u41, u42, u43, u44 ∈ R. HenceM1,M2,M3,M4

are additive functions.

To show that M1(u1),M2(u2),M3(u3),M4(u4) are unique. Assume that the another mappings

M
′

1(u1),M
′

2(u2),M
′

3(u3),M
′

4(u4) fullfilling the functional equations (1.8), (1.9), (1.10), (1.11) respectively.
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Now,

∥∥M1(u1)−M1
1 (u1)

∥∥ ≤ 2

4

s−1∑
q=0

τ1(4q+lu1, 4
q+lu1, 4

q+lu1, 4
q+lu1)

4q+l
→ 0 as l→∞;

∥∥M2(u2)−M1
2 (u2)

∥∥ ≤ 2

3

s−1∑
q=0

τ2(3q+lu2, 3
q+lu2, 3

q+lu2, 0)

3q+l
→ 0 as l→∞;

∥∥M3(u3)−M1
3 (u3)

∥∥ ≤ s−1∑
q=0

τ3(2q+lu3, 2
q+lu3, 0, 0)

2q+l
→ 0 as l→∞;

∥∥M4(u4)−M1
4 (u4)

∥∥ ≤ s−1∑
q=0

τ4(2q+lu4, 0, 2
q+lu4, 0)

2q+l
→ 0 as l→∞.

Thus, we obtain H1(u1) = M
′

1(u1), H2(u2) = M
′

2(u2), H3(u3) = M
′

3(u3), H4(u4) = M
′

4(u4) are

unique. Hence theorem holds for p = 1.

Now substituting

(u11, u12, u13, u14) =
(
u1

4 ,
u1

4 ,
u1

4 ,
u1

4

)
in (3.10);

(u21, u22, u23, u24) =
(
u2

3 ,
u2

3 ,
u2

3 , 0
)

in (3.11) ;

(u31, u32, u33, u34) =
(
u3

2 ,
u3

2 , 0, 0
)

in (3.12) ;

(u41, u42, u43, u44) =
(
u4

2 , 0,
u4

2 , 0
)

in (3.13),

we arrive ∥∥∥H1(u1)− 4H1

(u1
4

)∥∥∥ ≤ τ1 (u1
4
,
u1
4
,
u1
4
,
u1
4

)
;u1 ∈ R; (30)∥∥∥H2(u2)− 3H2

(u2
3

)∥∥∥ ≤ τ2 (u2
3
,
u2
3
,
u2
3
, 0
)

;u2 ∈ R; (31)∥∥∥H3(u3)− 2H3

(u3
2

)∥∥∥ ≤ τ3 (u3
2
,
u3
2
, 0, 0

)
;u3 ∈ R; (32)∥∥∥H4(u4)− 2H4

(u4
2

)∥∥∥ ≤ τ4 (u4
2
, 0,

u4
2
, 0
)

;u4 ∈ R. (33)

The rest of the proof is same way to that of case p = 1. Thus, the proof is complete. �

Corollary 1. Let η, ρ be positive integers and assume the mappings H1, H2, H3, H4 : R → S

managing the inequalities

‖H1 (u11 + u12 + u13 + u14)− {H1 (u11) +H1 (u12) +H1 (u13) +H1 (u14)}‖

≤



(i) η;

η
∑4
r=1 ‖u1r‖

ρ
;

η
∑4
r=1 ‖u1r‖

ρr ;

η
∏4
r=0 ‖u1r‖

ρ
;

η
∏4
r=0 ‖u1r‖

ρr ;

(34)
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‖H2 (u21 + u22 + u23 − u24)− {H2 (u21) +H2 (u22) +H2 (u23)−H2 (u24)}‖

≤


(i) η;

η
∑4
r=1 ‖u2r‖

ρ
;

η
∑4
r=1 ‖u2r‖

ρr ;

(35)

‖H3 (u31 + u32 − u33 − u34)− {H3 (u31) +H3 (u32)−H3 (u33)−H3 (u34)}‖

≤


(i) η;

η
∑4
r=1 ‖u3r‖

ρ
;

η
∑4
r=1 ‖u3r‖

ρr ;

(36)

‖H4 (u41 − u42 + u43 − u44)− {H4 (u41)−H4 (u42) +H4 (u43)−H4 (u44)}‖

≤


(i) η;

η
∑4
r=1 ‖u4r‖

ρ
;

η
∑4
r=1 ‖u1r‖

ρr ;

(37)

for all u11, u12, u13, u14, u21, u22, u23, u24, u31, u32, u33, u34, u41, u42, u43, u44 ∈ R. Then there exists

a unique mappings M1,M2,M3,M4 : R→ S such that

‖H1 (u1)−M1 (u1)‖ ≤



(i) η
|3| ;

η4‖u1‖ρ
|4−4ρ| ;
4∑
k=1

η‖u1‖ρk
|4−4ρk | ;

η‖u‖4ρ
|4−44ρ| ;
η‖u‖ρ1+ρ2+ρ3+ρ4

|4−4ρ1+ρ2+ρ3+ρ4 | ;u1 ∈ R

(38)

‖H2 (u2)−M2 (u2)‖ ≤


(i) η

|2| ;
η3‖u2‖ρ
|3−3ρ| ;
3∑
k=1

η‖u2‖ρk
|3−3ρk | ;u2 ∈ R;

(39)

‖H3 (u3)−M3 (u3)‖ ≤


(i) |η| ;
η2‖u3‖ρ
|2−2ρ| ;
2∑
k=1

η‖u3‖ρk
|2−2ρk | ;u3 ∈ R

(40)

‖H4 (u4)−M4 (u4)‖ ≤


(i) |η| ;
η2‖u4‖ρ
|2−2ρ| ;
2∑
k=1

η‖u4‖ρk
|2−2ρk | ;u4 ∈ R

(41)

Proof. Let us take the right hand side of (3.1); (3.2); (3.3); (3.4) as the right hand of (3.34); (3.35);

(3.33); (3.37), respectively in Theorem 3.1, we obtain our needed result. �
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4. Conclusion

According to Table 1.1 and after, tasting the food on 4 hotels, we gave some suggestions about

the hotels to my friends based on Food, Quality of food, Serves attitude and Issuing tips.

We liked first two hotels H1 and H2 because the food was tasty and they served very well. So

normally people will go to hotels H1 and H2 in more number.

Also third Hotel H3 was self-serviced, so many of them did not like it. The food was not tasty

in the fourth Hotel H4 and no one liked it and none of them will go there.

By Corollary 3.2 for conditions (i) of (3.38); (3.39); (3.40); (3.41), we get the better possible

upper bound stability analysis in first two hotels only that is in (3.38); (3.39). In rest of the

situations that is in (3.40); (3.41), we cannnot get the upper bound.
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