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Abstract. The study of delta fractional proportional differences on hZ as a bridge between

fractional calculus in the literature and on a time scale hZ. By use of time scale calculus

notation, we formulate delta fractional sums and differences on fractional difference operator.

The discrete h−Laplace transform and its convolution are used to study the newly introduced

fractional operators. Numerical examples with graphs are verified and generated by MATLAB.

1. Introduction

The fractional difference operator which plays a pivotal role in studying numerous systems and

has been widely applied in various areas of study [6, 11, 13, 14]. The above theory found its advent

with the invention of the difference operator ∆`, which is an extension of ∆. It helps in drawing the

higher partial sums on arithmetic, geometric progression and products of n-consecutive terms of

arithmetic progression [15]. A better sense of direction in this field was given by Maria Susai Manuel

et.al., in 2011 with the extension of ∆
α

to α-difference operator ∆
α(`)

, where u(k+`)−αu(k) = ∆
α(`)

u(k),

` > 0. Further development in this line of study was further complemented by the works of Britto

Antony Xavier et.al., [4, 5]. When ` = 1, the operator ∆` becomes ∆.

2. The delta fractional sums and differences

Here, we present some basic definitions, notations and preliminaries.

Definition 1. Let u(t), t ∈ [0,∞), be a real or complex valued function and h > 0 be a fixed shift

value. Then, the forward difference operator on hZ is defined as

∆hu(t) =
u(t+ h)− u(t)

h
, (1)

and the backward difference operator on hZ is defined as

∇hu(t) =
u(t)− u(t− h)

h
. (2)

For h = 1, we get ∆u(t) = u(t+ 1)− u(t) and ∇u(t) = u(t)− u(t− 1) respectively.
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The forward jumping operator on the time scale hZ is σh(t) = t+h and the backward jumping

operator is ρh(t) = t− h. For a, b ∈ R and h > 0, we use the notation Na,h = {a, a+ h, a+ 2h, ..., }
and b,hN = {b, b− h, b− 2h, ...}.

Definition 2. Let u(t) and v(t) are the two real valued functions defined on (−∞,∞) and if

∆hv(t) = u(t) then the finite inverse principle law is given by

v(t)− v(t−mh) = h

m∑
r=1

u(t− rh),m ∈ Z+ (3)

and infinite h− difference sum is defined by

∆−1h u(t) = h

∞∑
r=0

u(t+ rh). (4)

Definition 3. [7] For h > 0 and ν ∈ R, the falling h-polynomial factorial function is defined by

t
(ν)
h = hν

Γ( th + 1)

Γ( th + 1− ν)
. (5)

For h = 1, we get t(ν) =
Γ(t+ 1)

Γ(t+ 1− ν)
. The division by a pole yields zero.

Remark 4. Applying the Definition 1, we get the modified identities as follows:

(i) ∆ht
(µ)
h = µt

(µ−1)
h , (ii) ∆−1h t

(µ)
h =

t
(µ+1)
h

µ+ 1
. (6)

Since the difference equation ∆hv(t) = u(t) has two kinds of solution: one is closed form

solution of the form v(t) = ∆−1h u(t) and another one is summation form solution which is of the

form v(t) =
t/h−1∑
i=a/h

u(ih). In this work, we verify the findings are equal numerically in both kind

of solutions. For getting the closed form solution for the product of two function, we need the

following the discrete integration by parts.

Lemma 5. [9] Let h > 0 and u(t), w(t) are real valued bounded functions. Then

(i) ∆−1h (u(t)v(t)) = u(t)∆−1h v(t)−∆−1h (∆−1h v(σh(t))∆hu(t)). (7)

(ii) ∆−1h [v(σh(t))∆hu(t)] = u(t)v(t)− u(t)∆hv(t). (8)

In view[12], the equations (7) and (8) can be written as the following integration by parts

theorem.

Definition 6. (Integration by parts) Given two functions u, v : Na,h → R and b, c ∈ Na,h, b < c,

then we have

(i)

c∫
b

u(t)∆hv(t)∆ht = u(t)v(t)
∣∣∣c
b
−

c∫
b

v(σh(t))∆hu(t)∆ht (9)

(ii)

c∫
b

u(σh(t))∆hv(t)∆ht = u(t)v(t)
∣∣∣c
b
−

c∫
b

v(t)∆hu(t)∆ht (10)
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In case h = 1, we obtain the existing integration by parts theorem in [12].

Lemma 7. Let h > 0, s ∈ R and hs 6= −1. Then

a∆−1h

(
1

1 + hs

) t−a
h +1

=

h

(
1

1 + hs

) t−a
h +1

(
−hs

1 + hs

) . (11)

Proof. The proof follows by taking u(t) =

(
1

1 + hs

) t−a
h +1

in (1) and applying a∆−1h on both

sides. �

Corollary 1. Let h > 0, s ∈ R and hs 6= −1. Then(
1

1 + hs

) t−mh−a
h

s
−

(
1

1 + hs

) t−a
h

s
= h

m∑
r=1

(
1

1 + hs

) t−rh−a
h +1

. (12)

Proof. The proof of (12) follows by applying (3) in (11). �

Example 8. For the particular values a = 2, h = 3, s = 4, t = 8 and m = 3, the corollary 1 is

verified by MATLAB, numerically LHS = RHS = 3.2485.

Lemma 9. Let s ∈ T = Na,h, then for all t we have

∆h;t
(t− s)(k+1)

h

(k + 1)!
=

(t− s)(k)h

k!
(13)

Proof. The proof follows by using definitions and direct calculations,

where ∆h;tu(t, s) =
u(t+ h, s)− u(t, s)

h
. �

Lemma 10. For the time scale T = Na,h, the delta Taylor polynomial is

hn(t, s) =
(t− s)(n)h

n!
, n ∈ N0 (14)

Definition 11. [3] (Delta discrete Mittag-Leffler) For λ ∈ R, |λ| < 1 and α, β, z ∈ C with Re(α) >

0, the delta discrete Mittag-Leffler function is

E(α,β)(λ, z) =

∞∑
k=0

λk
(z + (k − 1)(α− 1))(kα)(z + k(α− 1))(β−1)

Γ(αk + β)
. (15)

For β = 1, we have

E(α)(λ, z) =

∞∑
k=0

λk
(z + (k − 1)(α− 1))(kα)

Γ(αk + 1)
. (16)
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Definition 12. (Delta h-discrete Mittag-Leffler) For λ ∈ R, |λhα| < 1 and α, β, z ∈ C with

Re(α) > 0, the delta discrete Mittag-Leffler function is

hE(α,β)(λ, z) =

∞∑
k=0

λk
(z + (k − 1)(α− 1))

(kα)
h (z + k(α− 1))

(β−1)
h

Γ(αk + β)
. (17)

For β = 1, we have

hE(α)(λ, z) =

∞∑
k=0

λk
(z + (k − 1)(α− 1))

(kα)
h

Γ(αk + 1)
. (18)

Definition 13. [8] (Delta h−fractional sums) For a function u : Na,h → R, the delta left h−fractional

sum of order ν > 0 is given by

(a∆−νh u)(t) =
1

Γ(ν)

σ(t−νh)∫
a

(t− σh(s))
(ν−1)
h u(s)∆hs

=
1

Γ(ν)

t/h−ν∑
k=a/h

(t− σh(kh))
(ν−1)
h u(kh)h. (19)

the delta right h−fractional sum of order ν > 0 for u :b,h N→ R is given by

(h∆−νb u)(t) =
1

Γ(ν)

b∫
ρ(t+νh)

(ρh(s)− t)(ν−1)h u(s)∇hs

=
1

Γ(ν)

b/h∑
k=t/h+ν

(kh− σh(t))
(ν−1)
h u(kh)h. (20)

Definition 14. (Delta h−RL fractional differences) The delta left h−fractional difference operator

of order ν > 0 has the form

(a∆ν
hu)(t) = (∆n

ha∆
−(n−ν)
h u)(t)

=
∆n
h

Γ(n− ν)

t/h−(n−ν)∑
k=a/h

(t− σh(kh))
(n−ν−1)
h u(kh)h, t ∈ Na+(n−ν)h,h (21)

and the delta right h−fractional differences of order ν > 0 is defined as

(h∆ν
bu)(t) = (−1)n(∇nhh∆

−(n−ν)
b u)(t)

=
(−1)n∇nh
Γ(n− ν)

b/h∑
k=t/h+n−ν

(kh− σh(t))
(n−ν−1)
h u(kh)h t ∈b−(n−ν)h,h N (22)

Definition 15. (Caputo h−fractional differences) Let u be defined on Na,h and b,hN respectively.

Then the left and right delta Caputo h−fractional differences of order ν > 0 are defined by

(Ca ∆ν
hu)(t) = (∆n

ha ∆
−(n−ν)
h u)(t), t ∈ Na+(n−ν)h,h, (23)

(Ch ∆ν
bu)(t) = (−1)n(∇nh h∆

−(n−ν)
b u)(t), t ∈ b−(n−ν)h,hN, (24)

where n = [ν] + 1.
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Lemma 16. [1] Let ν, µ, h > 0. Then

a+µh∆−νh (t− a)µ−1h =
Γ(µ)

Γ(µ+ ν)
(t− a)

(ν+µ−1)
h , (25)

h∆−νb−µh(b− t)µ−1h =
Γ(µ)

Γ(µ+ ν)
(b− t)(ν+µ−1)h . (26)

3. Generalized delta discrete h− Laplace transform and its convolution

Following the time scale calculus, we have the following definition for the delta discrete Laplace

transform on Na,h.

Definition 17. Assume that u(t) is defined on Na,h. Then, the generalized delta discrete Laplace

transform of u is defined by

La,h{u(t)}(s) =
∞∫
a
hẽ
σ
	s(t, a)u(t)∆ht

=

∞∫
a

hẽ	s(t, a)

1 + hs
u(t)∆ht =

∞∫
a

(
1

1 + hs

) t−a
h +1

u(t)∆ht. (27)

Using the closed and summation form solution, the above equation can be written as

La,h{u(t)}(s) = a∆−1h u(t)

(
1

1 + hs

) t−a
h +1 ∣∣∣∞

a
= h

∞∑
i=a/h

u(ih)

(
1

1 + hs

)i− a
h+1

. (28)

Remark 18. (i) In case a = 0, we get

Lh{u(t)}(s) = ∆−1h u(t)

(
1

1 + hs

) t
h+1 ∣∣∣∞

0
= h

∞∑
i=0

u(ih)

(
1

1 + hs

)i+1

. (29)

(ii) In a special case h = 1, we have

La{u(t)}(s) = a∆−1u(t)

(
1

1 + s

)t−a+1 ∣∣∣∞
a

=

∞∑
i=a

u(i)

(
1

1 + s

)i−a+1

, (30)

which is existing in[12].

Theorem 19. Let t ∈ Na,h, h, ν > 0 and hs 6= −1 then we have

a∆−1h

[
t
(µ)
h

(
1

1 + hs

) t−a
h +1

]
=

µ+1∑
i=1

(−1)µ(i−1)t
(µ+1−i)
h

(
1

1 + hs

) t−a
h

si
. (31)

Proof. Taking u(t) = t
(1)
h and v(t) =

(
1

1 + hs

) t−a
h +1

in (7), using (6) and (11), we get

a∆−1h

[
t
(1)
h

(
1

1 + hs

) t−a
h +1

]
= −

t
(1)
h

(
1

1 + hs

) t−a
h

s
−

(
1

1 + hs

) t−a
h

s2
. (32)
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Again taking u(t) = t
(2)
h and v(t) =

(
1

1 + hs

) t−a
h +1

in (7), gives

a∆−1
h

[
t
(2)
h

(
1

1 + hs

) t−a
h

+1
]

= −
t
(2)
h

(
1

1 + hs

) t−a
h

s
+

2

s
a∆−1

h

[
t
(1)
h

(
1

1 + hs

) t−a
h

+1
]
. (33)

Now applying (32) and simplifying we get

a∆−1
h

[
t
(2)
h

(
1

1 + hs

) t−a
h

+1
]

= −
t
(2)
h

(
1

1 + hs

) t−a
h

s
−

2t
(1)
h

(
1

1 + hs

) t−a
h

s2
−

2t
(1)
h

(
1

1 + hs

) t−a
h

s3
, (34)

which can be rewritten as follows,

a∆−1h

[
t
(2)
h

(
1

1 + hs

) t−a
h +1

]
=

3∑
i=1

(−1)2(i−1)t
(3−i)
h

(
1

1 + hs

) t−a
h

si
. (35)

By continuing the above process upto µ times, we get (31). �

Lemma 20. Let µ, h > 0 and s 6= 0, then

Lh{t(µ)h }(s) =
µ!

sµ+1
. (36)

Proof. The proof follows by using (29) by applying the limits 0 to ∞ in (31). �

Example 21. By equating (29) and (36), we get

Lh{t(µ)h }(s) = h

∞∑
i=0

(ih)
(µ)
h

(
1

1 + hs

)i+1

=
µ!

sµ+1
. (37)

Which is verified by MATLAB for the particular values h = 3, µ = 2 and s = 10 has equal in both

closed and summation form solution numerically 0.0020.

The solution of input function(signal) is analyzed graphically as follows:
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Figure 1. Time Domain(t)

Figure 2. Frequency(s)

Figure 1. is a plot of the input function(signal) t
(3)
3 and Figure 2. is a plot of output function in

the frequency domain for µ = 2 it tells that for the converges the condition is s 6= 0.
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Remark 22. By the virtue of (36), we can write the Laplace transform of t
(ν−1)
h for fraction ν > 0

as follows

Lh{t(ν−1)h }(s) =
Γ(ν)

sν
. (38)

Definition 23. Let s ∈ R, 0 < ν < 1 and u, v : Na,h → R be the functions. Then the delta

h−discrete convolution of u and v is defined by

(u ∗ v)(t) =

t∫
a

v(t− σh(s) + a)u(s)∆hs = h

t/h−1∑
i=a/h

u(ih)v(t− σh(ih) + a), t ∈ Na,h (39)

Theorem 24. (The h−convolution theorem) For s ∈ R and u, v defined on Na,h, we have

La,h{(u ∗ v)(t)}(s) = La,h{u(t)}(s)La,h{v(t)}(s). (40)

Proof. By the definition, we have

La,h{(u ∗ v)(t)}(s) = h

∞∑
i=a/h

(
1

1 + hs

)i− a
h+1

h

i−1∑
k=a/h

u(kh)v(ih− σh(kh) + a)

= h2
∞∑

k=a/h

∞∑
i=k+1

u(kh)v((i− k − 1 + a/h)h)

(1 + hs)i−a/h+1

= h2
∞∑

k=a/h

∞∑
j=a/h

u(kh)v(jh)

(1 + hs)j+k+1−a/h−a/h+1

= h

∞∑
k=a/h

u(kh)

(1 + hs)k−a/h+1
h

∞∑
j=a/h

v(jh)

(1 + hs)j−a/h+1

= La,h{u(t)}(s)La,h{v(t)}(s),

where the change of variable j = i− k − 1 + a/h is used. �

The following lemma is a generalization of the result in [12] to hZ.

Lemma 25. Let u be defined on Na,h. Then,

La,h{∆hu(t)}(s) = sFa(s)− u(a), (41)

where Fa(s) = La,h{u(t)}(s).
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Proof. By Definition 17 and using (10), we see that

La,h{∆hu(t)}(s) =

∞∫
a

hẽ
σ
	s(t, a)∆hu(t)∆ht

= hẽ
σ
	s(t, a)u(t)

∣∣∣∞
a
−
∞∫
a

	shẽ	s(t, a)u(t)∆ht

= −u(a) + s

∞∫
a

hẽ
σ
	s(t, a)u(t)∆ht

= sFa(s)− u(a).

�

4. Delta fractional proportional differences on hZ

From the time scale calculus in view of [10] and [2], the delta exponential function ẽp(t, a) =

(1 + ph)
t−a
h , where p(t) =

ρ− 1

ρ
on hZ satisfies the difference equation

∆hu(t) =
ρ− 1

ρ
u(t), u(a) = 1,

where ρ 6= h

h+ 1
. Notice that h = 1 implies that the proportional factor ρ 6= 1

2
.

The delta h−discrete proportional differences of order 0 < ρ ≤ 1 for function u on Na,h is

given by

(∆ρ
hu)(t) = (1− ρ)u(t) + ρ∆hu(t), t ∈ Na+h,h

where the regressivity condition insists that ρ 6= h

h+ 1
.

Remark 26. [10] Since, the first order proportional type difference equation

(∆ρ
hv)(t) = (1− ρ)v(t) + ρ∆hv(t) = u(t), v(a) = va

has the solution v(t) = vaẽp(t, a) +
1

ρ

t∫
a

ẽp(t− s− h, 0)u(s)∆hs, where p =
ρ− 1

ρ
and

t∫
a

u(s)∆hs =

h
t/h−1∑
i=a/h

u(ih).

Definition 27. For 0 < ρ ≤ 1, the first order proportional sum with ∆ρ is defined by

(a∆−1,ρh u)(t) =
1

ρ

t∫
a

ẽp(t− s− h, 0)u(s)∆hs, p =
ρ− 1

ρ
. (42)

Remark 28. By using the definition of convolution the above relation can be written as (a∆−1,ρh u)(t) =
1

ρ
(u ∗ ẽp(t− a), 0).
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Property 29. Let u is defined on Na,h, we have

(a∆−1,ρh ∆ρ
hu)(t) = u(t)− ẽp(t− a, 0)u(a) = u(t)−

(
ρ+ (ρ− 1)h

ρ

) t−a
h

u(a). (43)

Proof. Applying h−Laplace transform on a∆−1,ρh ∆ρ
hu(t), we see that

La,h{a∆−1,ρh ∆ρ
hu(t)}(s) = La,h{

1

ρ
∆ρ
hu(t) ∗ ẽp(t− a, 0)}(s)

=
1

ρ
La,h{(1− ρ)u(t) + ρ∆hu(t)}(s)La,h{ẽp(t− a, 0)}(s)

=

{
1− ρ
ρ
Fa(s) + sFa(s)− u(a)

}(
ρ

sρ− ρ+ 1

)
= Fa(s)− u(a)

ρ

sρ− ρ+ 1
.

Applying inverse Laplace transform L−1a,h, we obtain (30). �

To generalize the first order proportional difference to fractional sum, we see that

(a∆−n,ρh u)(t) =
1

ρ

t∫
a

ẽp(t− ψ1 − h, 0)∆hψ1

1

ρ

ψ1∫
a

ẽp(ψ1 − ψ2 − h, 0)∆hψ2

...
1

ρ

ψn−1∫
a

ẽp(ψn−1 − ψn − h, 0)u(s)∆hψn

(a∆−n,ρh u)(t) =
1

ρnΓ(n)

t∫
a

ẽp(t− ψ − nh, 0)(t− σh(ψ))
(n−1)
h u(ψ)∆hψ,

where the Lemma 9 is used. By the virtue of the above result, we can present the following

generalized type fractional proportional sum.

Definition 30. For 0 < ρ ≤ 1 and ν > 0, we define the left proportional fractional sum of u by

(a∆−ν,ρh u)(t) =
1

ρνΓ(ν)

t∫
a

ẽp(t− ψ − νh, 0)(t− σh(ψ))
(ν−1)
h u(ψ)∆hψ,

=
h

ρνΓ(ν)

t/h−ν∑
i=a/h

ẽp(t− (i+ ν)h, 0)(t− σh(ih))
(ν−1)
h u(ih). (44)

and the right proportional fractional sum as

(h∆−ν,ρb u)(t) =
1

ρνΓ(ν)

b∫
t

ẽp(ψ − νh− t, 0)(ρh(ψ)− t)(ν−1)h u(ψ)∆hψ,
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=
h

ρνΓ(ν)

b/h∑
i=t/h+ν

ẽp((i− ν)h− t, 0)(ρh(ih)− t)(ν−1)h u(ih). (45)

Remark 31. Using convolution, we can express the left proportional fractional sum as

(a∆−ν,ρh u)(t) =
1

ρνΓ(ν)

(
ρ+ (ρ− 1)h

ρ

)(1−ν)

ẽp(t, 0)t
(ν−1)
h ∗ u(t).

In particular case h = 1,

(a∆−ν,ρu)(t) =
1

ρνΓ(ν)

(
2ρ− 1

ρ

)(1−ν)

ẽp(t, 0)t(ν−1) ∗ u(t).

Definition 32. (RL-fractional proportional) For 0 < ρ ≤ 1 and ν > 0, we define the left

proportional fractional sum of u by

(a∆ν,ρ
h u)(t) = (∆n,ρ

h a∆
−(n−ν),ρ
h u)(t)

=
∆n,ρ
h

ρn−νΓ(n− ν)

t∫
a

ẽp(t− ψ − (n− ν)h, 0)(t− σh(ψ))
(n−ν−1)
h u(ψ)∆hψ, (46)

and the right proportional fractional sum as

(h∆ν,ρ
b u)(t) = (−1)n(∇n,ρh h∆

−(n−ν),ρ
b u)(t)

=
(−1)n∇n,ρh
ρn−νΓ(n− ν)

b∫
t

ẽp(ψ − (n− ν)h− t, 0)(ρh(ψ)− t)(n−ν−1)h u(ψ)∆hψ. (47)

Remark 33. (i) lim
ν→0

(a∆ν,ρ
h u)(t) = u(t) and (ii) lim

ν→1
(a∆ν,ρ

h u)(t) = (a∆ρ
hu)(t).

Theorem 34. (semi group property for delta fractional proportional) Assume that u(t) is defined

on Na,h. Then

a∆−µ,ρh (a∆−ν,ρh u)(t) =a ∆−ν,ρh (a∆−µ,ρh u)(t) = (a∆
−(µ+ν),ρ
h u)(t). (48)

Proof. By definition 30 and using the lemma 16, we obtain

a∆−µ,ρh (a∆−ν,ρh u)(t) =
1

ρµ+νΓ(µ)Γ(ν)

t∫
a

w∫
a

ẽp(t− w − µh, 0)ẽp(w − ψ − νh, 0)

(t− σh(w))
(µ−1)
h (t− σh(ψ))

(ν−1)
h u(ψ)∆hψ∆hw

=
1

ρµ+νΓ(ν)

t∫
a

ẽp(t− ψ − (µ+ ν)h, 0)u(ψ)

1

Γ(µ)

t∫
ψ

(t− w)
(µ−1)
h (w − ψ)

(ν−1)
h ∆hw∆hψ
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=
ρ−(µ+ν)

Γ(ν)

t∫
a

u(ψ)ẽp(t− ψ − (µ+ ν)h, 0)ψ∆−µh (t− ψ)
(ν−1)
h ∆hψ

=
ρ−(µ+ν)

Γ(µ+ ν)

t∫
a

u(ψ)ẽp(t− ψ − (µ+ ν)h, 0)(t− ψ)
(µ+ν−1)
h ∆hψ

= (a∆
−(µ+ν),ρ
h u)(t).

�

Corollary 2. Let u is defined on Na,h. Then

a∆µ,ρ
h (a∆−ν,ρh u)(t) = (a∆

−(ν−µ),ρ
h u)(t) (49)

Proof. The proof follows by taking negative index of µ in theorem 34. �

The following theorems is the Laplace transform of fractional proportional type difference equation

and fractional proportional sum.

Theorem 35. Assume that u is defined on Na,h. Then

La,h{a∆−n,ρh u(t)}(s) = (ρs+ 1− ρ)nLa,h{u(t)}(s)− ρ
n−1∑
r=0

(ρs+ 1− ρ)n−1−r(∆r,ρ
h u)(a) (50)

Proof. By applying h−Laplace transform on remark 26 and using lemma 25, we arrive

La,h{a∆1,ρ
h u(t)}(s) = La,h{(1− ρ)u(t) + ρ∆hu(t)}(s)

= (1− ρ)La,h{u(t)}(s) + ρLa,h{a∆hu(t)}(s)
= (1− ρ)La,h{u(t)}(s) + ρ{sLa,h{u(t)}(s)− u(a)}
= (1− ρ+ ρs)La,h{u(t)}(s)− ρu(a)

By applying induction on n, we get (50). �

Theorem 36. For ν ∈ R+, u(t) be the function, then we have

La,h{a∆−ν,ρh u(t)}(s) =

(
ρ+ (ρ− 1)h

ρ

)(1−ν) La,h{u(t)}(s)
(ρs− ρ+ 1)ν

(51)

Proof. By the definition of Laplace transform and convolution, we get

La,h{a∆−ν,ρh u(t)}(s) =
1

ρνΓ(ν)

(
ρ+ (ρ− 1)h

ρ

)(1−ν)

La,h{ẽp(t, 0)t
(ν−1)
h ∗ u(t)}(s)

=
1

ρνΓ(ν)

(
ρ+ (ρ− 1)h

ρ

)(1−ν)

La,h{ẽp(t, 0)t
(ν−1)
h }(s)La,h{u(t)}(s)

=
1

ρνΓ(ν)

(
ρ+ (ρ− 1)h

ρ

)(1−ν)
Γ(ν)(

s− ρ−1
ρ

)ν La,h{u(t)}(s),

which completes the proof. �
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5. Conclusion

This present work focuses on delta type fractional sums and differences, a new type of generalized

discrete h−Laplace transform and its convolution are defined. Several properties and results of

h−discrete Laplace transform have been discussed. Also, the researchers investigates the newly

proposed delta type fractional proportional sums and differences on discrete RL and Mittag-Leffler

functions. The findings are verified and analysed by MATLAB. Through this paper, when h = 1

and ρ = 1, we get the existing results in the literature.
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