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Abstract. In this paper, we introduce and investigate the generalized Ulam - Hyers stability of

homomorphisms and derivations of a generalized additive functional equation in Banach, Quasi -

Banach, C∗, Lie C∗, Jordan C∗ Algebras.

1. Introduction

In Ulam [26] proposed the general Ulam stability problem: When is it true that by slightly

changing the hypotheses of a theorem one can still assert that the thesis of the theorem remains

true or approximately true? In Hyers [7] gave the first affirmative answer to the question of Ulam for

additive functional equations on Banach spaces. Hyers result has since then seen many significant

generalizations, both in terms of the control condition used to define the concept of approximate

solution one can see [2, 5, 17, 21, 23].

One of the most famous functional equation is the additive functional equation

λ(u+ v) = λ(u) + λ(v) (1)

having solution λ(u) = cu. This functional equation was first treated by A.M. Legendre (1791) and

C.F. Gauss (1809). In 1821, it was first solved by A.L. Cauchy in the class of continuous real-valued

functions. It is often called an Cauchy additive functional equation in honor of A.L. Cauchy [1, 8].

In this paper, we introduce and investigate the generalized Ulam - Hyers stability of homomorphisms

and derivations of a generalized additive functional equation

λ(αu+ βv) + λ(βu+ αv) = (α+ β)(λ(u) + λ(v)) (2)
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where α, β 6= 0 in Banach, Quasi - Banach, C∗, Lie C∗, Jordan C∗, Algebras.

Now, we provide the general solution of the functional equation (2).

Theorem 1. Assume V1 and V2 are real vector spaces. Suppose that λ : V1 → V2 satisfies the

functional equation (1) then λ : V1 → V2 satisfies the functional equation (2).

During the last seven decades the stability problems of various functional equations in several

algebras have been broadly investigated by number of mathematicians and more detail’s about the

definitions on all the algebras see [3, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 24, 25]. In each

sections, we give basic definitions about algebras and prove the generalized Ulam - Hyers stability

of homomorphisms and derivations with respect to that algebras.

2. Stability Results in Banach Algebras

2.1. Banach Algebra Definitions.

Definition 2. A complex Banach space A is said to be a Banach algebra if it satisfies the

condition

||xy|| ≤ C||x||||y||

for all x, y ∈ A.

Definition 3. Let A and B be real Banach algebras. A mapping H : A → B is called a algebra

homomorphism if

H(xy) = H(x)H(y)

for all x, y ∈ A.

Definition 4. Let A and B be real Banach algebras. A D : A→ A is called a algebra derivation

if

D(xy) = D(x)y + xD(y)

for all x, y ∈ A.

In order to establish the stability results, throughout this section let us assume A is a Banach

algebra with norm || · ||A and B is a Banach algebra with norm || · ||B .

2.2. Homomorphism Stability Result.

Theorem 5. If λ : A → B and η : A2 → [0,∞) are functions satisfying the double inequalities

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B ≤ η(u, v) (1)

‖λ(uv)− λ(u)− λ(v)‖B ≤ η(u, v) (2)

and

lim
δ→∞

1

γδν
η(γδνu, γδνv) = 0 = lim

δ→∞

1

γ2δν
η(γδνu, γδνv) (3)

for all u, v ∈ A where

ν = ±1 and γ = α+ β. (4)
50



DBCY Publication Journal of Pure and Applied Mathematics
Volume: 01, Issue: 01 July 2021, Page No. 49-67

ISSN: XXX-XXXX

Then there exists a unique homomorphism function H : A → B satisfying the functional equation

(2) and

‖λ(u)−H(u)‖B ≤
1

2γ

∞∑
χ= 1−ν

2

η(γχνu, γχνu)

γχν
(5)

and the mapping H(u) is defined by

H(u) = lim
δ→∞

1

γδν
λ(γδνu) (6)

for all u ∈ A.

Proof. Assume ν = 1. Letting (u, v) by (u, u) in (1), we arrive

‖2λ((α+ β)u)− 2(α+ β)λ(u)‖B ≤ η(u, u) =⇒ ‖λ(γu)− γλ(u)‖B ≤
1

2
η(u, u) (7)

for all u ∈ A. It follows from above inequality that∥∥∥∥λ(γu)

γ
− λ(u)

∥∥∥∥
B
≤ 1

2γ
η(u, u) (8)

for all u ∈ A. Now replacing u by γu and dividing by γ in (8), we obtain∥∥∥∥λ(γ2u)

γ2
− λ(γu)

γ

∥∥∥∥
B
≤ 1

2γ2
η(γu, γu) (9)

for all u ∈ A. From (8) and (9), we get∥∥∥∥λ(γ2u)

γ2
− λ(u)

∥∥∥∥
B
≤ 1

2γ

[
η(u, u) +

η(γu, γu)

γ

]
(10)

for all u ∈ A. Proceeding further and using induction on a positive integer δ, we have∥∥∥∥λ(γδu)

γδ
− λ(u)

∥∥∥∥
B
≤ 1

2γ

δ−1∑
χ=0

1

γχ
η(γχu, γχu) (11)

for all u ∈ A. It is easy to verify that the sequence{
λ(γδu)

γδ

}
,

is a Cauchy sequence by replacing u by γεu and dividing by γε in (11), for any ε, δ > 0. Since B is

complete, there exists a mapping H(u) : A → B such that

H(u) = lim
δ→∞

1

γδ
λ(γδu), for all u ∈ A.

Letting δ →∞ in (11), we see that (5) holds for all u ∈ A. To show that H satisfies (2), replacing

(u, v) by (γδu, γδv) and dividing by γδ in (1), we obtain

1

γδ
∥∥λ(γδ(αu+ βv)) + λ(γδ(βu+ αv))− (α+ β)(λ(γδu) + λ(γδv))

∥∥
B

1

γn
η(γδu, γδv)

for all u, v ∈ A. Letting δ → ∞ in the above inequality and using the definition of H(u), we see

that

H(αu+ βv) +H(βu+ αv) = (α+ β)(H(u) +H(v)).
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Thus the existence of H satisfies the additive functional equation (2) for all u, v ∈ A.

From (2) and definition of H, we achieve

‖H(uv)−H(u)H(v)‖B =
1

γ2δ
∥∥λ(γδu γδv)− λ(γδu)λ(γδv)

∥∥
B

≤ 1

γ2δ
η(γδu, γδv)→ 0 as δ →∞.

Therefore

H(uv) = H(u)H(v)

for all u, v ∈ A. Thus, H is a algebra homomorphism. To prove existence of H is unique, we assume

H′(u) be another homomorphism mapping satisfying (2) and (4), then

‖H(u)−H′(u)‖B =
1

γε
‖H(γεu)−H′(γεu)‖B

≤ 1

γε
{‖H(γεu)− λ(γεu)‖B + ‖λ(γnu)−H′(γnu)‖B}

≤ 2

2γ

∞∑
χ=0

1

γ(δ+ε)
η(γδ+εu, γδ+εu)

→ 0 as δ →∞

for all u ∈ A. Hence H is unique. Thus the theorem holds for ν = 1.

Letting u by u
γ in (7), we get ∥∥∥∥λ(u)− γλ

(
u

γ

)∥∥∥∥
B
≤ 1

2
η

(
u

γ
,
u

γ

)
(12)

for all u ∈ A. Again setting u by u
γ and multiply by γ in (12), we obtain∥∥∥∥γλ(uγ
)
− γ2λ

(
u

γ2

)∥∥∥∥
B
≤ γ

2
η

(
u

γ2
,
u

γ2

)
(13)

for all u ∈ A. From (12) and (13), we achieve∥∥∥∥λ(u)− γ2λ
(
u

γ2

)∥∥∥∥
B
≤ 1

2

[
η

(
u

γ
,
u

γ

)
+ γ η

(
u

γ2
,
u

γ2

)]
(14)

for all u ∈ A. Proceeding further and using induction on a positive integer δ, we have∥∥∥∥λ(u)− γδλ
(
u

γδ

)∥∥∥∥
B
≤ 1

2

δ∑
χ=1

γδ−1η

(
u

γδ
,
u

γδ

)
=

1

2γ

δ∑
χ=1

γδη

(
u

γδ
,
u

γδ

)
(15)

for all u ∈ A. The rest of the proof is similar lines to that of case ν = 1. Thus, the theorem holds

for ν = −1. This completes the proof of the theorem. �

The following corollary is an immediate consequence of Theorem 5 concerning some stabilities

of (2).
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Corollary 1. Suppose λ : A → B be a mapping and there exists real numbers π and $ such that

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B

‖λ(uv)− λ(u)− λ(v)‖B

 ≤


π,

π {||u||$A + ||v||$A} ,
π ||u||$A ||v||$A ,

(16)

for all u, v ∈ A. Then there exists a unique homomorphism function H : A → B satisfying the

functional equation (2) and

‖λ(u)−H(u)‖B ≤



π

2|1− γ|
,

π||u||$A
2|γ − γ$|

, $ 6= 1

π||u||2$A
2|γ − γ2$|

, 2$ 6= 1

(17)

for all u ∈ A.

2.3. Derivation Stability Result.

Theorem 6. If λ : A → A and η : A2 → [0,∞) are functions satisfying the double inequalities

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B ≤ η(u, v) (18)

‖λ(uv)− uλ(v)− λ(u)v‖B ≤ η(u, v) (19)

and

lim
δ→∞

1

γδν
η(γδνu, γδνv) = 0 = lim

δ→∞

1

γ2δν
η(γδνu, γδνv) (20)

for all u, v ∈ A where

ν = ±1 and γ = α+ β. (21)

Then there exists a unique derivation function D : A → A satisfying the functional equation (2)

and

‖λ(u)−D(u)‖B ≤
1

2γ

∞∑
χ= 1−ν

2

η(γχνu, γχνu)

γχν
(22)

and the mapping D(u) is defined by

D(u) = lim
δ→∞

1

γδν
λ(γδνu) (23)

for all u ∈ A.

Proof. By the proof of Theorem 5, there exists a unique additive mapping D : A → A satisfying

(22). Also, the mapping D : A → A given by

D(u) = lim
δ→∞

1

γδ
λ(γδu)

for all u ∈ A.
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From (19) and by definition of D, we achieve

‖D(uv)− uD(v)−D(u)v‖B =
1

γ2δ
∥∥λ(γδu γδv)− γδuλ(γδv)− λ(γδu)γδv

∥∥
B

≤ 1

γ2δ
η(γδu, γδv)→ 0 as δ →∞.

Therefore

D(uv) = uD(v) +D(u)v

for all u, v ∈ A. Thus, D is a algebra derivation. �

The following corollary is an immediate consequence of Theorem 6 concerning some stabilities

of (2).

Corollary 2. Suppose λ : A → A be a mapping and there exists real numbers π and $ such that

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B

‖λ(uv)− uλ(v)− λ(u)v‖B

 ≤


π,

π {||u||$A + ||v||$A} ,
π ||u||$A ||v||$A ,

(24)

for all u, v ∈ A. Then there exists a unique derivation function D : A → A satisfying the functional

equation (2) and

‖λ(u)−D(u)‖B ≤



π

2|1− γ|
,

π||u||$A
2|γ − γ$|

, $ 6= 1

π||u||2$A
2|γ − γ2$|

, 2$ 6= 1

(25)

for all u ∈ A.

3. Stability Results in Quasi - Banach Algebras

3.1. Quasi - Banach Algebra Definitions.

Definition 7. Let X be a linear space over K . A quasi norm is a real-valued function on X

satisfying the following:

(QB1) ‖ x ‖≥ 0 for all u ∈ X and ‖ x ‖= 0 if and only if u = 0.

(QB2) ‖ ρx ‖ =| ρ | . ‖ x ‖ for all ρ ∈ K and all u ∈ X.

(QB3) There is a constant K ≥ 1 such that ‖ x+ y ‖≤ K (‖ x ‖ + ‖ y ‖)
for all u, y ∈ X.

The pair (X, ‖ · ‖) is called quasi normed space if ‖ · ‖ is a quasi norm on X. The smallest

possible K is called the modulus of concavity of ‖ · ‖.

Definition 8. A quasi Banach space is a complete quasi normed space.

Definition 9. A quasi normed space X is called a quasi normed algebra if there is a constant

C such that

||xy|| ≤ C||x||||y||
for all u, y ∈ X.
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Definition 10. Let A and B be quasi normed algebra. A mapping H : A→ B is called a algebra

homomorphism if

H(xy) = H(x)H(y)

for all u, y ∈ A.

Definition 11. Let A and B be quasi normed algebra. A mapping D : A→ A is called a derivation

if

D(xy) = D(x)y + xD(y)

for all u, y ∈ A.

In order to establish the stability results, throughout this section let us assume A is a quasi norm

algebra with norm || · ||A and B is a quasi Banach algebra with norm || · ||B .

3.2. Homomorphism Stability Result.

Theorem 12. If λ : A → B and η : A2 → [0,∞) are functions satisfying the double inequalities

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B ≤ η(u, v) (1)

‖λ(uv)− λ(u)− λ(v)‖B ≤ η(u, v) (2)

and

lim
δ→∞

1

γδν
η(γδνu, γδνv) = 0 = lim

δ→∞

1

γ2δν
η(γδνu, γδνv) (3)

for all u, v ∈ A where

ν = ±1 and γ = α+ β. (4)

Then there exists a unique homomorphism function H : A → B satisfying the functional equation

(2) and

‖λ(u)−H(u)‖B ≤
Kδ−1

2γ

∞∑
χ= 1−ν

2

η(γχνu, γχνu)

γχν
(5)

and the mapping H(u) is defined by

H(u) = lim
δ→∞

1

γδν
λ(γδνu) (6)

for all u ∈ A.

Proof. Assume ν = 1. Letting (u, v) by (u, u) in (1), we arrive

‖2λ((α+ β)u)− 2(α+ β)λ(u)‖B ≤ η(u, u) =⇒ ‖λ(γu)− γλ(u)‖B ≤
1

2
η(u, u) (7)

for all u ∈ A. It follows from above inequality that∥∥∥∥λ(γu)

γ
− λ(u)

∥∥∥∥
B
≤ 1

2γ
η(u, u) (8)

for all u ∈ A. Now replacing u by γu and dividing by γ in (8), we obtain∥∥∥∥λ(γ2u)

γ2
− λ(γu)

γ

∥∥∥∥
B
≤ 1

2γ2
η(γu, γu) (9)
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for all u ∈ A. From (8) and (9), we get∥∥∥∥λ(γ2u)

γ2
− λ(u)

∥∥∥∥
B
≤ K

2γ

[
η(u, u) +

η(γu, γu)

γ

]
(10)

for all u ∈ A. Proceeding further and using induction on a positive integer δ, we have∥∥∥∥λ(γδu)

γδ
− λ(u)

∥∥∥∥
B
≤ Kδ−1

2γ

δ−1∑
χ=0

1

γχ
η(γχu, γχu) (11)

for all u ∈ A. The rest of the proof is similar lines to that of Theorem 5. This completes the proof

of the Theorem. �

The following corollary is an immediate consequence of Theorem 12 concerning some stabilities

of (2).

Corollary 3. Suppose λ : A → B be a mapping and there exists real numbers π and $ such that

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B

‖λ(uv)− λ(u)− λ(v)‖B

 ≤


π,

π {||u||$A + ||v||$A} ,
π ||u||$A ||v||$A ,

(12)

for all u, v ∈ A. Then there exists a unique homomorphism function H : A → B satisfying the

functional equation (2) and

‖λ(u)−H(u)‖B ≤



Kδ−1π

2|1− γ|
,

Kδ−1π||u||$A
2|γ − γ$|

, $ 6= 1

Kδ−1π||u||2$A
2|γ − γ2$|

, 2$ 6= 1

(13)

for all u ∈ A.

3.3. Derivation Stability Result.

Theorem 13. If λ : A → A and η : A2 → [0,∞) are functions satisfying the double inequalities

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B ≤ η(u, v) (14)

‖λ(uv)− uλ(v)− λ(u)v‖B ≤ η(u, v) (15)

and

lim
δ→∞

1

γδν
η(γδνu, γδνv) = 0 = lim

δ→∞

1

γ2δν
η(γδνu, γδνv) (16)

for all u, v ∈ A where

ν = ±1 and γ = α+ β. (17)

Then there exists a unique derivation function D : A → A satisfying the functional equation (2)

and

‖λ(u)−D(u)‖B ≤
Kδ−1

2γ

∞∑
χ= 1−ν

2

η(γχνu, γχνu)

γχν
(18)
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and the mapping D(u) is defined by

D(u) = lim
δ→∞

1

γδν
λ(γδνu) (19)

for all u ∈ A.

Proof. The proof is similar lines to that of Theorem 6. �

The following corollary is an immediate consequence of Theorem 13 concerning some stabilities

of (2).

Corollary 4. Suppose λ : A → A be a mapping and there exists real numbers π and $ such that

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B

‖λ(uv)− uλ(v)− λ(u)v‖B

 ≤


π,

π {||u||$A + ||v||$A} ,
π ||u||$A ||v||$A ,

(20)

for all u, v ∈ A. Then there exists a unique derivation function D : A → A satisfying the functional

equation (2) and

‖λ(u)−D(u)‖B ≤



Kδ−1π

2|1− γ|
,

Kδ−1π||u||$A
2|γ − γ$|

, $ 6= 1

Kδ−1π||u||2$A
2|γ − γ2$|

, 2$ 6= 1

(21)

for all u ∈ A.

4. Stability Results in C∗ Algebras

4.1. C∗−Algebra Definitions.

Definition 14. A Banach algebra A is said to be a C∗− algebra if it satisfies the involution

condition

f(x∗) = f(x)∗

for all u ∈ A.

Definition 15. Let A and B be C∗− algebras. A mapping H : A → B is called a C∗−algebra

homomorphism if

H(xy) = H(x)H(y)

for all u, y ∈ A.

Definition 16. Let A and B be C∗− algebras. A mapping D : A → A is called a C∗−algebra

derivation if

D(xy) = D(x)y + xD(y)

for all u, y ∈ A.

In order to establish the stability results, throughout this section let us assume A is a C∗−
algebra with norm || · ||A and B is a C∗− algebra with norm || · ||B .
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4.2. Homomorphism Stability Result.

Theorem 17. If λ : A → B and η : A2 → [0,∞) are functions satisfying the triple inequalities

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B ≤ η(u, v) (1)

‖λ(uv)− λ(u)− λ(v)‖B ≤ η(u, v) (2)

‖λ(u∗)− λ(u)∗‖B ≤ η(u) (3)

and

lim
δ→∞

1

γδν
η(γδνu, γδνv) = 0 = lim

δ→∞

1

γ2δν
η(γδνu, γδνv) = lim

δ→∞

1

γδν
η(γδνu) (4)

for all u, v ∈ A where

ν = ±1 and γ = α+ β. (5)

Then there exists a unique C∗− algebra homomorphism function H : A → B satisfying the functional

equation (2) and

‖λ(u)−H(u)‖B ≤
1

2γ

∞∑
χ= 1−ν

2

η(γχνu, γχνu)

γχν
(6)

and the mapping H(u) is defined by

H(u) = lim
δ→∞

1

γδν
λ(γδνu) (7)

for all u ∈ A.

Proof. By the proof of Theorem 5, there exists a unique homomorphism mapping H : A → B
satisfying (6). From (3) and definition of H, we achieve

‖H(u∗)−H(u)∗‖B =
1

γδ
∥∥λ(γδu∗)− λ(γδu)∗

∥∥
B

≤ 1

γδ
η(γδu)→ 0 as δ →∞.

Therefore

H(u∗) = H(u)∗

for all u ∈ A. Thus, H is a C∗−algebra homomorphism. �

The following corollary is an immediate consequence of Theorem 17 concerning some stabilities

of (2).

Corollary 5. Suppose λ : A → B be a mapping and there exists real numbers π and $ such that

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B

‖λ(uv)− λ(u)− λ(v)‖B

 ≤


π,

π {||u||$A + ||v||$A} ,
π ||u||$A ||v||$A ,

(8)

and

‖λ(u∗)− λ(u)∗‖B ≤ π||u||
$
A (9)
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for all u, v ∈ A. Then there exists a unique C∗− algebra homomorphism function H : A → B
satisfying the functional equation (2) and

‖λ(u)−H(u)‖B ≤



π

2|1− γ|
,

π||u||$A
2|γ − γ$|

, $ 6= 1

π||u||2$A
2|γ − γ2$|

, 2$ 6= 1

(10)

for all u ∈ A.

4.3. Derivation Stability Result.

Theorem 18. If λ : A → A and η : A2 → [0,∞) are functions satisfying the triple inequalities

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B ≤ η(u, v) (11)

‖λ(uv)− uλ(v)− λ(u)v‖B ≤ η(u, v) (12)

‖λ(u∗)− λ(u)∗‖B ≤ η(u) (13)

and

lim
δ→∞

1

γδν
η(γδνu, γδνv) = 0 = lim

δ→∞

1

γ2δν
η(γδνu, γδνv) (14)

for all u, v ∈ A where

ν = ±1 and γ = α+ β. (15)

Then there exists a unique C∗− algebra derivation function D : A → A satisfying the functional

equation (2) and

‖λ(u)−D(u)‖B ≤
1

2γ

∞∑
χ= 1−ν

2

η(γχνu, γχνu)

γχν
(16)

and the mapping D(u) is defined by

D(u) = lim
δ→∞

1

γδν
λ(γδνu) (17)

for all u ∈ A.

Proof. The proof is similar lines to that of Theorem 6. �

The following corollary is an immediate consequence of Theorem 18 concerning some stabilities

of (2).

Corollary 6. Suppose λ : A → A be a mapping and there exists real numbers π and $ such that

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B

‖λ(uv)− uλ(v)− λ(u)v‖B

 ≤


π,

π {||u||$A + ||v||$A} ,
π ||u||$A ||v||$A ,

(18)

and

‖λ(u∗)− λ(u)∗‖B ≤ π||u||
$
A (19)
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for all u, v ∈ A. Then there exists a unique C∗− algebra derivation function D : A → A satisfying

the functional equation (2) and

‖λ(u)−D(u)‖B ≤



π

2|1− γ|
,

π||u||$A
2|γ − γ$|

, $ 6= 1

π||u||2$A
2|γ − γ2$|

, 2$ 6= 1

(20)

for all u ∈ A.

5. Stability Results in Lie C∗ Algebras

5.1. Lie C∗−Algebra Definitions.

Definition 19. A C∗− algebra A endowed with the Lie product

[x, y] =
(xy − yx)

2

on A, is called a Lie C∗−algebra for all u, y ∈ A.

Definition 20. Let A and B be C∗− algebras. A mapping H : A → B is called a Lie Lie C∗−
algebra homomorphism if

H([xy]) = [H(x), H(y)]

for all u, y ∈ A.

Definition 21. Let A and B be C∗− algebras. A mapping D : A → A is called a Lie C∗−
derivation if

D([xy]) = [D(x), y] + [x,D(y)]

for all u, y ∈ A.

In order to establish the stability results, throughout this section let us assume A is a Lie C∗−
algebra with norm || · ||A and B is a Lie C∗− algebra with norm || · ||B .

5.2. Homomorphism Stability Result.

Theorem 22. If λ : A → B and η : A2 → [0,∞) are functions satisfying the double inequalities

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B ≤ η(u, v) (1)

‖λ([uv])− [λ(u), λ(v)]‖B ≤ η(u, v) (2)

and

lim
δ→∞

1

γδν
η(γδνu, γδνv) = 0 = lim

δ→∞

1

γ2δν
η(γδνu, γδνv) (3)

for all u, v ∈ A where

ν = ±1 and γ = α+ β. (4)
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Then there exists a unique Lie C∗− homomorphism function H : A → B satisfying the functional

equation (2) and

‖λ(u)−H(u)‖B ≤
1

2γ

∞∑
χ= 1−ν

2

η(γχνu, γχνu)

γχν
(5)

and the mapping H(u) is defined by

H(u) = lim
δ→∞

1

γδν
λ(γδνu) (6)

for all u ∈ A.

Proof. By the proof of Theorem 5, there exists a unique homomorphism mapping H : A → B
satisfying (5). From (2) and definition of H, we achieve

‖H([uv]) = [H(u),H(v)]‖B =
1

γ2δ
∥∥λ([γδu γδv])− [λ(γδu), λ(γδv)]

∥∥
B

≤ 1

γ2δ
η(γδu, γδv)→ 0 as δ →∞.

Therefore

H([uv]) = [H(u),H(v)]

for all u ∈ A. Thus, H is a Lie C∗− algebra homomorphism. �

The following corollary is an immediate consequence of Theorem 22 concerning some stabilities

of (2).

Corollary 7. Suppose λ : A → B be a mapping and there exists real numbers π and $ such that

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B

‖λ(uv)− λ(u)− λ(v)‖B

 ≤


π,

π {||u||$A + ||v||$A} ,
π ||u||$A ||v||$A ,

(7)

for all u, v ∈ A. Then there exists a unique Lie C∗− algebra homomorphism function H : A → B
satisfying the functional equation (2) and

‖λ(u)−H(u)‖B ≤



π

2|1− γ|
,

π||u||$A
2|γ − γ$|

, $ 6= 1

π||u||2$A
2|γ − γ2$|

, 2$ 6= 1

(8)

for all u ∈ A.

5.3. Derivation Stability Result.

Theorem 23. If λ : A → A and η : A2 → [0,∞) are functions satisfying the double inequalities

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B ≤ η(u, v) (9)

‖λ([uv])− [λ(u)v]− [u, λ(v)]‖B ≤ η(u, v) (10)
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and

lim
δ→∞

1

γδν
η(γδνu, γδνv) = 0 = lim

δ→∞

1

γ2δν
η(γδνu, γδνv) (11)

for all u, v ∈ A where

ν = ±1 and γ = α+ β. (12)

Then there exists a unique Lie C∗− algebra derivation function D : A → A satisfying the functional

equation (2) and

‖λ(u)−D(u)‖B ≤
1

2γ

∞∑
χ= 1−ν

2

η(γχνu, γχνu)

γχν
(13)

and the mapping D(u) is defined by

D(u) = lim
δ→∞

1

γδν
λ(γδνu) (14)

for all u ∈ A.

Proof. By the proof of Theorem 6, there exists a unique additive mapping D : A → A satisfying

(13). Also, the mapping D : A → A given by

D(u) = lim
δ→∞

1

γδ
λ(γδu)

for all u ∈ A.

From (10) and by definition of D, we achieve

‖D([uv])− [D(u), v]− [u,D(v)]‖B =
1

γ2δ
∥∥λ([γδu γδv])− [λ(γδu), γδv]− [γδu, λ(γδv)]

∥∥
B

≤ 1

γ2δ
η(γδu, γδv)→ 0 as δ →∞.

Therefore

D([uv]) = [D(u), v] + [u,D(v)]

for all u, v ∈ A. Thus, D is a Lie C∗− algebra derivation. �

The following corollary is an immediate consequence of Theorem 23 concerning some stabilities

of (2).

Corollary 8. Suppose λ : A → A be a mapping and there exists real numbers π and $ such that

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B

‖λ([uv])− [λ(u)v]− [u, λ(v)]‖B

 ≤


π,

π {||u||$A + ||v||$A} ,
π ||u||$A ||v||$A ,

(15)

for all u, v ∈ A. Then there exists a unique Lie C∗− algebra derivation function D : A → A
satisfying the functional equation (2) and

‖λ(u)−D(u)‖B ≤



π

2|1− γ|
,

π||u||$A
2|γ − γ$|

, $ 6= 1

π||u||2$A
2|γ − γ2$|

, 2$ 6= 1

(16)
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for all u ∈ A.

6. Stability Results in Jordan C∗ Algebras

6.1. JC∗−Algebra Definitions.

Definition 24. A Jordan C∗− algebra A endowed with a anticommutator product

u ◦ y =
(xy + yx)

2

on A, is called a JC∗−algebra for all u, y ∈ A.

Definition 25. Let A and B be C∗− algebras. A mapping H : A → B is called a JC∗−algebra

homomorphism if

H(x ◦ y) = H(x) ◦H(y)

for all u, y ∈ A.

Definition 26. Let A and B be C∗− algebras. A mapping D : A → A is called a JC∗−algebra

derivation if

D(x ◦ y) = D(x) ◦ y + x ◦D(y)

for all u, y ∈ A.

In order to establish the stability results, throughout this section let us assume A is a JC∗−
algebra with norm || · ||A and B is a JC∗− algebra with norm || · ||B .

6.2. Homomorphism Stability Result.

Theorem 27. If λ : A → B and η : A2 → [0,∞) are functions satisfying the double inequalities

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B ≤ η(u, v) (1)

‖λ(u ◦ v)− λ(u) ◦ λ(v)‖B ≤ η(u, v) (2)

and

lim
δ→∞

1

γδν
η(γδνu, γδνv) = 0 = lim

δ→∞

1

γ2δν
η(γδνu, γδνv) (3)

for all u, v ∈ A where

ν = ±1 and γ = α+ β. (4)

Then there exists a unique JC∗− homomorphism function H : A → B satisfying the functional

equation (2) and

‖λ(u)−H(u)‖B ≤
1

2γ

∞∑
χ= 1−ν

2

η(γχνu, γχνu)

γχν
(5)

and the mapping H(u) is defined by

H(u) = lim
δ→∞

1

γδν
λ(γδνu) (6)

for all u ∈ A.
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Proof. By the proof of Theorem 5, there exists a unique homomorphism mapping H : A → B
satisfying (5). From (2) and definition of H, we achieve

‖H(u ◦ v)−H(u) ◦ H(v)‖B =
1

γ2δ
∥∥λ(γδu ◦ γδv)− λ(γδu) ◦ λ(γδv)

∥∥
B

≤ 1

γ2δ
η(γδu, γδv)→ 0 as δ →∞.

Therefore

H(u ◦ v) = H(u) ◦ H(v)

for all u ∈ A. Thus, H is a JC∗− algebra homomorphism. �

The following corollary is an immediate consequence of Theorem 27 concerning some stabilities

of (2).

Corollary 9. Suppose λ : A → B be a mapping and there exists real numbers π and $ such that

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B

‖λ(u ◦ v)− λ(u) ◦ λ(v)‖B

 ≤


π,

π {||u||$A + ||v||$A} ,
π ||u||$A ||v||$A ,

(7)

for all u, v ∈ A. Then there exists a unique JC∗− algebra homomorphism function H : A → B
satisfying the functional equation (2) and

‖λ(u)−H(u)‖B ≤



π

2|1− γ|
,

π||u||$A
2|γ − γ$|

, $ 6= 1

π||u||2$A
2|γ − γ2$|

, 2$ 6= 1

(8)

for all u ∈ A.

6.3. Derivation Stability Result.

Theorem 28. If λ : A → A and η : A2 → [0,∞) are functions satisfying the double inequalities

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B ≤ η(u, v) (9)

‖λ(u ◦ v)− λ(u) ◦ v − u ◦ λ(v)‖B ≤ η(u, v) (10)

and

lim
δ→∞

1

γδν
η(γδνu, γδνv) = 0 = lim

δ→∞

1

γ2δν
η(γδνu, γδνv) (11)

for all u, v ∈ A where

ν = ±1 and γ = α+ β. (12)

Then there exists a unique JC∗− algebra derivation function D : A → A satisfying the functional

equation (2) and

‖λ(u)−D(u)‖B ≤
1

2γ

∞∑
χ= 1−ν

2

η(γχνu, γχνu)

γχν
(13)
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and the mapping D(u) is defined by

D(u) = lim
δ→∞

1

γδν
λ(γδνu) (14)

for all u ∈ A.

Proof. By the proof of Theorem 6, there exists a unique additive mapping D : A → A satisfying

(13). Also, the mapping D : A → A given by

D(u) = lim
δ→∞

1

γδ
λ(γδu)

for all u ∈ A.

From (10) and by definition of D, we achieve

‖D(u ◦ v)−D(u) ◦ v − u ◦ D(v)]‖B =
1

γ2δ
∥∥λ(γδu ◦ γδv])− λ(γδu) ◦ γδv − γδu ◦ λ(γδv)

∥∥
B

≤ 1

γ2δ
η(γδu, γδv)→ 0 as δ →∞.

Therefore

D(u ◦ v) = D(u) ◦ v + u ◦ D(v)

for all u, v ∈ A. Thus, D is a JC∗− algebra derivation. �

The following corollary is an immediate consequence of Theorem 28 concerning some stabilities

of (2).

Corollary 10. Suppose λ : A → A be a mapping and there exists real numbers π and $ such that

‖λ(αu+ βv) + λ(βu+ αv)− (α+ β)(λ(u) + λ(v))‖B

‖λ(u ◦ v)− λ(u) ◦ v − u ◦ λ(v)‖B

 ≤


π,

π {||u||$A + ||v||$A} ,
π ||u||$A ||v||$A ,

(15)

for all u, v ∈ A. Then there exists a unique JC∗− algebra derivation function D : A → A satisfying

the functional equation (2) and

‖λ(u)−D(u)‖B ≤



π

2|1− γ|
,

π||u||$A
2|γ − γ$|

, $ 6= 1

π||u||2$A
2|γ − γ2$|

, 2$ 6= 1

(16)

for all u ∈ A.
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