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Abstract. In the field of functional equations, till the present level of its developments many

researchers obtainded a functional equations satisfied by only upto f(x) = x40. In this paper,

authors introduced a hectic radical functional equation satisfied by f(x) = x100 and investigate

its generalized Hyers-Ulam-Rassias(HUR) stability in probabilistic modular(PM) space by using

fixed point theory.

1. Introduction and Preliminaries

The stability problem of functional equations originates from the fundamental question: When

is it true that a mathematical object satisfying a certain property approximately must be close to

an object satisfying the property exactly?

In connection with the above question, in 1940, S. M. Ulam [26] raised a question concerning

the stability of homomorphisms. Let G be a group and let G′ be a metric group with d(., .).

Given ε > 0 does there exist a δ > 0 such that if a function f : G → G′ satisfies the inequality

d(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then there is a homomorphism H : G → G′ with

d(f(x), H(x)) for all x ∈ G?

The first partial solution to Ulam’s question was given by D. H. Hyers [6]. In 1978, Th. M.

Rassias [22] provided a generalized version of the theorem of Hyers which permitted the Cauchy

difference to become unbounded. The phenomenon that was introduced and proved by Th. M.

Rassias is called the Hyers-Ulam-Rassias stability.

In 1982-1989, J. M. Rassias [18, 19] introduced Ulam-Gavruta-Rassias stability involving a

product of different powers of norms. Also, very recently J. M. Rassias [21] introduced Hyers Ulam

J.M.Rassias stability involving mixed product of powers of norms. In 1994, a generalization of all

the above stabilities was obtained by P. Găvruta [5] is called the generalized Hyers-Ulam-Rassias

stability.
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Now the authors have obtained an special kind of equation which shall possess the nature of

hectic type of functional equation. The equation can be expressed as

f(αx+ y) + f(αx− y) = α3 [f(x+ y) + f(x− y)]

+ 2
(
α100 − α3

)
f(x) + 2

(
1− α3

)
f(y)

+

98∑
k∈2N

2(100Ck)
(
α100−k − α3

)
f
(

100
√
x100−kyk

)
(1)

for α 6= 0,±1 and k ∈ N.

The notion of metric space was generalized by the author Menger[8] in 1942 by the name of

statistical metric space later is now called probabilistic metric space. One can also refer[24]. Later

the probabilistic metric space was used by many researchers, see[2, 7, 17, 9, 25, 4]. In 2007, the

author K. Nourouzi[16] introduced probabilistic modular to investigate some basic facts in the

probabilistic metric space and is now called probabilistic modular space. The orthogonal modular

stability of radical quintic functional equation was investigated by the authors R.Murali and P.

Divyakumari [10] in 2019. In 2012, stability of a cubic functional equation was investigated by the

authors K. Ravi, J.M.Rassias and P. Narasimman [23] in Menger probabilistic normed space.

In 2013, authors Yeol Je Cho et al.[29], presented a fixed point method to prove the generalized

Hyers-Ulam stability of additive-quadratic-cubic functional equations in β−homogeneous probabilistic

modular spaces

In 2013, the authors S.Zolfaghari et al.[30] investigated the generalized Hyers-Ulam-Rassias

stability of an mixed type functional equation of the form

h(α+ aβ) + h(α− aβ) = h(α+ β) + h(α− β) +
2(α+ 1)

α
h(αy)− 2(α+ 1)h(y)

for α 6= 0,±1.

In 2019, Rassias, Dutta and Narasimman [15] investigated the stability of general A-quartic

functional equations in non-Archimedean intuitionistic fuzzy normed spaces. Very recently, Murali,

Divyakumari and Dutta [13] introduced an Euler-Lagrange radical functional equation with solution

and stability. Also, one can refer [1, 11, 12, 14].

Definition 1. Let X be a real vector space and if a mapping ρ : X → ∆ fulfills the following

conditions

(i) ρ(x)(0) = 0,

(ii) ρ(x)(t) = 1 for all t > 0, if and only if x = Γ (Γ is the null vector in X),

(iii) ρ(−x)(t) = ρ(x)(t),

(iv) ρ(αx+ βy)(r + t) ≥ ρ(x)(r) ∧ ρ(x)(t),

for all x, y ∈ X, α, β, r, t ∈ R+, α+β = 1, then a pair (X, ρ) is called a probabilistic modular space

and (X, ρ) is β−homogeneous if ρ(αx)(t) = ρ(x)( t
|α|β ) for all x ∈ X, t > 0, α ∈ R\{0}. Here, ∆ is

f : R→ R+ the set of all non-decreasing functions with inft∈R f(t) = 0 and supt∈R f(t) = 1. Also,

the function min is denoted by ∧.
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Example 2. Let X is a real vector space and ρ is a modular on X. Then a pair (X, ρ) is a

probabilistic modular space, where

ρ(x)(t) =

 t
t+ρ(x) , t > 0 , x ∈ X
0, t ≤ 0 , x ∈ X.

Definition 3. Let (X, ρ) be a probabilistic modular space. Then

(i) A sequence {xn} in (X, ρ) is said to be ρ−convergent to x, if for all t > 0 and λ ∈ (0, 1),

there exists n0 a positive integer such that ρ(xn − x)(t) > 1− λ for all n ≥ n0.

(ii) A sequence {xn} in (X, ρ) is said to be ρ−Cauchy, if for all t > 0 and λ ∈ (0, 1), there exists

n0 a positive integer such that ρ(xn − xm)(t) > 1− λ for all n,m ≥ n0.

(iii) In (X, ρ), every ρ−convergent sequence is a ρ−Cauchy sequence. If every ρ−Cauchy

sequence is ρ−convergent sequence, then (X, ρ) is called a ρ−complete probabilistic modular

space.

(iv) (X, ρ) possesses Fatou property if for any sequence {xn} of X, ρ−converging to x, we have

ρ(x)(t) ≥ lim
n≥1

sup ρ(xn)(t) for all t > 0.

Definition 4. A probabilistic modular ρ is said to satisfy the ∆2−condition if there exists κ > 0

such that ρ(2z) = κρ(z) for all z ∈ Z.

The chapter structured as follows: In Section-1 the authors provides necessary introduction

of this chapter. In Section-2 the authors obtain general solution of the hectic radical functional

equation (1). In Sections-3, the authors discuss generalized Hyers-Ulam-Rassias stability of hectic

radical functional equation (1) in probabilistic modular(PM) space using fixed point theory and the

conclusion given in Section-4.

2. General solution of hectic radical functional equation

In this section author obtains the general solution of a hectic functional equation(1) of the form

f(αx+ y) + f(αx− y)− α3f(x+ y)− α3f(x− y)

=
(
2α100 − 2α3

)
f(x) +

(
2− 2α3

)
f(y)

+
(
2(100C2)α98 − 2α3(100C2)

)
f
(

100
√
x98y2

)
(2)

+
(
2(100C4)α96 − 2α3(100C4)

)
f
(

100
√
x96y4

)
+ . . .

+
(
2(100C98)α2 − 2α3100C98

)
f
(

100
√
x2y98

)
,

for a fixed real α and α 6= 0,±1.

Theorem 5. Let X and Y be real vector spaces. If a mapping f : X → Y satisfies the functional

equation (2), then f is hectic and even.
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Proof. Consider f satisfies the hectic functional equation(2). Setting (x, y) by (0, 0) and (x, 0) in

(2), we obtain f(0) = 0 and f(αx) = α100f(x), respectively. ∀x ∈ X. Hence, f is hectic.

Substituting x = 0 in (2), we arrive f(−y) = f(y), for all y ∈ X and hence f is even. �

3. Stability of hectic radical functional equation in PM−space

In this section, author obtains the generalized Hyers-Ulam-Rassias stability of hectic functional

equation (1) in probabilistic modular space(PM-space) using fixed point technique. For mapping

f : E → (X, ρ), consider

Me(x, y) = f(αx+ y) + f(αx− y)− α3f(x+ y)− α3f(x− y)

−
(
2α100 − 2α3

)
f(x)−

(
2− 2α3

)
f(y)

−
(
2(100C2)α98 − 2α3(100C2)

)
f
(

100
√
x98y2

)
−
(
2(100C4)α96 − 2α3(100C4)

)
f
(

100
√
x96y4

)
− . . .

−
(
2(100C98)α2 − 2α3100C98

)
f
(

100
√
x2y98

)
,

for a fixed real α and α 6= 0,±1.

Theorem 6. Let E be a linear space, X be a real vector space and (X, ρ) is a ρ−complete

β−homogeneous PM−space. If a mapping f : E → (X, ρ) satisfies an inequality of the form

ρ(Me(x, y)) ≥ ν(x, y)(t), (3)

for all x, y ∈ E and a given function ν : E × E → ∆, where ∆ is the set of all non-decreasing

function such that

ν(αax, 0)(α100βaNt) ≥ ν(x, 0)(t) (4)

for all x ∈ E and

ν(αamx, αamy)(α100βamt) = 1 (5)

for all x, y ∈ E and a constant 0 < N < 1
2β
. Then there exists a unique hectic mapping M : E →

(X, ρ) satisfies (2) and

ρ(M(x)− f(x))

(
t

α100βN
a−1
2 (1− 2βN)

)
≥ ν(x, 0)(t) (6)

for all x ∈ E.

Proof. Letting y = 0 in (3), we obtain

ρ(2f(αx)− 2α100f(x))(t) ≥ ν(x, 0)(t), (7)
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for all x ∈ E and which implies

ρ

(
f(αx)

α100
− f(x)

)
(t) = ρ

(
2f(αx)− 2α100f(x)

)
(2βα100βt) (8)

≥ ν(x, 0)(2βα100βt),

for all x ∈ E. Substituting x by α−1x in (8), we obtain

ρ

(
f(α−1x)

α−100
− f(x)

)
(t) = ρ

(
f(x)

α100
− f(α−1x)

)(
t

α100β

)
(9)

≥ ν(α−1x, 0)

(
2βα100βN−1

Nt

α100β

)
≥ ν(x, 0)

(
2βα100βN−1t

)
.

From (8) and (9), we obtain

ρ

(
f(αax)

α100a
− f(x)

)
(t) ≥ Ψ(x)(t) := ν(x, 0)

(
2βα100βN

a−1
2 t
)

(10)

for all x ∈ E. Consider P := h : E → (X, ρ)|h(0) = 0 and define η on P as follows,

η(h) = inf l > 0 : ρ(h(x))(lt) ≥ Ψ(x)(t),

for all x ∈ E. One can easily prove that η modular on N and indulges the ∆2−condition with 2β = κ

and Fatou property. Additionally, N is η−complete, see[30]. Consider the mapping R : Pη → Pη

as RM(x) := M(αax)
α100a for all M ∈ Pη.

Let h, j ∈ Pη and l > 0 be an arbitrary constant with η(h− j) ≤ l. From the definition of η, we

get

ρ(h(x)− j(x))(lt) ≥ Ψ(x)(t)

for all x ∈ E and which implies

ρ (Rh(x)−Rj(x)) (Nlt)

= ρ
(
α−100ah(αax)− α−100aj(αax)

)
(Nlt)

= ρ (h(αax)− j(αax))
(
α100βaNlt

)
≥ Ψ(αax)(α100βaNt)

≥ Ψ(x)(t)

for all x ∈ E. Hence η(Rh − Rj) ≤ Nη(h − j), for all h, j ∈ Pη, which means, R is a η−strict

contraction. Replacing x by αax in (10), we arrive

ρ

(
f(α2ax)

α100a
− f(αax)

)
(t) ≥ Ψ(αax)(t) (11)
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for all x ∈ E and therefore

ρ
(
α−2(100a)f(α2ax)− α−100af(αax)

)
(Nt) (12)

= ρ
(
α−100af(α2ax)− f(αax)

)
(α100βaNt)

≥ Ψ(αax)(α100βaNt) ≥ Ψ(x)(t),

for all x ∈ E. Now

ρ

(
f(α2ax)

α2(100a)
− f(x)

)(
2β(Nt+ t)

)
(13)

≥ ρ
(
f(α2ax)

α2(100a)
− f(αax)

α100a

)
(Nt) ∧ ρ

(
f(αax)

α100a
− f(x)

)
(t)

≥ Ψ(x)(t)

for all x ∈ E. In (13), replacing x by αax and 2β(Nt+ t) by α100βa2β(N2t+Nt), we arrive

ρ

(
f(α3ax)

α2(100a)
− f(αax)

)(
α100βa2β(N2t+Nt)

)
(14)

≥ Ψ(αax)(α100βjNt) ≥ Ψ(x)(t)

for all x ∈ E. Therefore,

ρ

(
f(α3ax)

α3(100a)
− f(αax)

α100a

)(
2β(N2t+Nt)

)
≥ Ψ(x)(t), (15)

for all x ∈ E and which implies

ρ

(
f(α3ax)

α3(100a)
− f(x)

)(
2β(2β(N2t+Nt) + t)

)
(16)

≥ ρ
(
f(α3ax)

α3(100a)
− f(αax)

α100a

)(
2β(N2t+Nt)

)
∧ ρ
(
f(αax)

α100a
− f(x)

)
(t)

≥ Ψ(x)(t),

for all x ∈ E. Generalizing the above inequality, we arrive

ρ

(
f(αamx)

α100(am)
− f(x)

)(
(2βN)m−1t+ 2β

m−1∑
i=1

(2βN)i−1t

)
≥ Ψ(x)(t), (17)

for all x ∈ E and m be a positive integer. Hence, we have

η(Rmf − f) ≤ (2βN)m−1 + 2β
m−1∑
i=1

(2βN)i−1 (18)

≤ 2β
m∑
i=1

(2βN)i−1 ≤ 2β

1− 2βN
,
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Now, one can easily prove that {Rm(f)} is η−converges to M ∈ Pη, see[30]. Therefore, inequality

(18) becomes

η(M − f) ≤ 2β

1− 2βN
, (19)

which leads

ρ (M(x)− f(x))

(
2β

1− 2βN
t

)
≥ Ψ(x)(t) = ν(x, 0)

(
2βα100βN

a−1
2 t
)
, (20)

for all x ∈ E and hence, we have

ρ (M(x)− f(x))

(
t

α100βN
a−1
2 (1− 2βN)

)
≥ ν(x, 0)(t), (21)

for all x ∈ E and hence the inequality (6) holds. One can easily prove the uniqueness of M by

assuming M ′ be another fixed point of R implies that M = M ′, see[30]. �

4. Conclusion

In this paper, author introduced a new hectic radical functional equation satisfied by the solution

f(x) = x100. Mainly, the authors obtained its general solution and investigated its generalized

Hyers-Ulam-Rassias stability in PM−space by using fixed point theory.
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