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Abstract. In this paper, we prove the approximate solution of the special type first order

linear differential equation by applying initial and boundary conditions. That is, we prove

the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the special type linear differential

equations of first order with initial and boundary conditions using Taylor’s series formula.

1. Introduction

The theory of stability is an important branch of the qualitative theory of differential equations.

In 1940, Ulam [1] posed a problem concerning the stability of functional equation: “Give conditions

in order for a linear function near an approximately linear function to exist.” A year later, Hyers [2]

gave an answer to the problem of Ulam for Cauchy additive functional equation defined on Banach

spaces. Thereafter, Aoki [3], Bourgin [4] and Rassias [5] improved the result reported in [2]. After

that, many mathematicians have extended the Ulam’s problem to other functional equations on

various spaces in different directions [6, 7, 8, 14, 15, 16, 17].

Definitions of both Hyers-Ulam stability and Hyers-Ulam-Rassias stability have applicable significance

since it means that if one is studying an Hyers-Ulam stable or Hyers-Ulam-Rassias stable system

then one does not have to reach the exact solution. (Which is usually is quite difficult or time

consuming). This is quite useful in many applications. For example, numerical analysis, optimization,

biology, economics, dynamic programming, wireless sensor networks, physics, chemistry, geometry

and etc., where finding the exact solution is quite difficult.

A generalization of Ulam’s problem was recently proposed by replacing functional equations with

differential equations: The differential equation

φ
(
f, x, x

′
, x

′′
, ...x(n)

)
= 0
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has the Hyers - Ulam stability if for a given ε > 0 and a function x such that∣∣∣φ(f, x, x′
, x

′′
, ...x(n)

)∣∣∣ ≤ ε,
there exists a solution xa of the differential equation such that

|x(t)− xa(t)| ≤ K(ε)

and lim
ε→0

K(ε) = 0.

Oblaza seems to be the first author who has investigated the Hyers-Ulam stability of linear

differential equations (see [18, 19]). Thereafter, Alsina and Ger published their paper [20], which

handles the Hyers-Ulam stability of the linear differential equation y′(t) = y(t). They proved in

[20] the following theorem.

Theorem 1. Assume that a differentiable function f : I −→ R is a solution of the differential

inequality

‖x′(t)− x(t)‖ ≤ ε.

where I is an open sub interval of R . Then there exists a solution g : I −→ R of the differential

equation x
′
(t) = x(t) such that for any t ∈ I, we have,

‖f(t)− g(t)‖ ≤ 3ε.

This result of C. Alsina and R. Ger [20] has been generalized by Takahasi [21]. They proved

in [21] that the Hyers-Ulam stability holds true for the Banach Space valued differential equation

x′(t) = λx(t).

Indeed, the Hyers-Ulam stability has been proved for the first order linear differential equations

in more general settings [8, 9, 11, 12].

Using the approach as in [1], Miura, Takahasi and Choda [12], Takahasi, Miura and Miyajima [21]

proved that the Hyers-Ulam stability holds true for the differential equation

x′ = λ x,

while Jung [10] proved a similar result for the differential equation φ(t)x′(t) = x.

I. A. Rus [13] discussed four types of Ulam stability: Ulam-Hyers stability, Generalized Ulam-Hyers

stability, Ulam-Hyers-Rassias stability and Generalized Ulam-Hyers-Rassias stability of the Ordinary

Differential Equation

u′(t) = A(u(t)) + f(t, u(t)), t ∈ [a, b].

Those previous results were extended to the Hyers-Ulam stability of linear differential equations

of first order, second order, third order and higher orders in [22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36].

In this paper, we study the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the special

type first order linear differential equation of the form

x′(t) + (p(t)− α(t))x(t) = 0 (1)
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where x ∈ C(I), p(t) ∈ C(I), and α(t) is a bounded for all sufficiently large t in R with initial

condition x(a) = 0 and with boundary conditions

x(a) = x(b) = 0 (2)

whereas I = [a, b], −∞ < a < b <∞ using Taylor’s series.

2. Preliminaries

First of all, we give the definition of the Hyers-Ulam stability and Hyers-Ulam-Rassias stability

of a differential equation (1) with initial and boundary conditions.

Definition 2. We say that the differential equation (1) has the Hyers-Ulam stability with boundary

conditions (2), if there exists a positive constant K satisfies the following properties: For every ε > 0

and x ∈ C([a, b]) satisfying the inequality

|x′(t) + (p(t)− α(t))x(t)| ≤ ε,

with x(a) = x(b) = 0, then there exists some y ∈ C([a, b]) satisfying

y′(t) + (p(t)− α(t)) y(t) = 0

with y(a) = y(b) = 0, such that |x(t)− y(t)| ≤ Kε.

Definition 3. We say that the differential equation (1) has the Hyers-Ulam stability with initial

conditions, if there exists a positive constant K satisfies the following properties: For every ε > 0

and x ∈ C([a, b]) satisfying the inequality

|x′(t) + (p(t)− α(t))x(t)| ≤ ε,

with x(a) = 0, then there exists some y ∈ C([a, b]) satisfying

y′(t) + (p(t)− α(t)) y(t) = 0

with y(a) = 0, such that |x(t)− y(t)| ≤ Kε.

If the above Definitions is also true when we replace ε with φ(t) ε, where φ : I → [0,∞) are

functions not depending on x(t) and y(t) explicitly, then we say that the corresponding differential

equation has the generalized Hyers-Ulam stability (or the Hyers-Ulam-Rassias stability).

Definition 4. We say that the differential equation (1) has the Hyers-Ulam-Rassias stability with

φ(t), where φ : R→ [0,∞) and boundary conditions (2), if there exists a positive constant K such

that the following conditions are holds: For every ε > 0, and x ∈ C([a, b]), if

|x′(t) + (p(t)− α(t))x(t)| ≤ φ(t)ε,

and x(a) = x(b) = 0, then there exists some y ∈ C([a, b]) satisfying

y′(t) + (p(t)− α(t)) y(t) = 0

and y(a) = y(b) = 0, such that |x(t)− y(t)| ≤ Kφ(t)ε.
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Definition 5. We say that the differential equation (1) has the Hyers-Ulam-Rassias stability with

initial condition and φ(t), where φ : R → [0,∞), if there exists a positive constant K satisfies the

following conditions: For every ε > 0, and x ∈ C([a, b]), if

|x′(t) + (p(t)− α(t))x(t)| ≤ φ(t)ε,

and x(a) = 0, then there exists some y ∈ C([a, b]) satisfying

y′(t) + (p(t)− α(t)) y(t) = 0

and y(a) = 0, such that |x(t)− y(t)| ≤ Kφ(t)ε.

We call such K as a Hyers-Ulam stability and Hyers-Ulam-Rassias stability constants for the

differential equation respectively.

3. Ulam Stability of Differential Equations using Boundary Conditions

Now, we are going to prove the Hyers-Ulam stability for the linear differential equation (1) with

boundary conditions (2).

Theorem 6. Let max |p(t)− α(t)| < 2

(b− a)
for t ∈ [a, b]. Then, the differential equation (1) has

the Hyers-Ulam stability with boundary conditions (2).

Proof. For every ε > 0, there exists x ∈ C([a, b]), such that

|x′(t) + (p(t)− α(t))x(t)| ≤ ε,

with x(a) = x(b) = 0. Let us define M = max {|x(t)| : t ∈ [a, b]}. Since x(a) = x(b) = 0, there

exists t0 ∈ (a, b) such that |x(t0)| = M . By Taylor’s series formula, we have

x(a) = x(t0) + x′(ξ)(t0 − a) (3)

x(b) = x(t0) + x′(ξ)(b− t0) (4)

We have x(a) = 0, and so equation (3) becomes

x(t0) + x′(ξ)(t0 − a) = 0.

Thus, we have |x′(ξ)| = M

(t0 − a)
. Similarly, from x(b) = 0 the relation (4) can be converted to

x(t0) + x′(ξ)(b− t0) = 0.

So, we have |x′(ξ)| = M

(b− t0)
. On the other hand, for t0 ∈ (a, a+b2 ], we obtain

M

(t0 − a)
≥ M

(b− a)

2

=
2M

(b− a)
. (5)

Now, if t0 ∈ [a+b2 , b), then
M

(t0 − b)
≥ M

(b− a)

2

=
2M

(b− a)
. (6)
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Using (5) and (6), we have max |x(t)| ≤ (b− a)

2
max |x′(t)| . Hence,

max |x(t)| ≤ (b− a)

2
{ max |x′(t) + (p(t)− α(t))x(t)− (p(t)− α(t))x(t)|}

≤ (b− a)

2
{max |x′(t) + (p(t)− α(t))x(t)|+ max |(p(t)− α(t))| max |x(t)|} .

Now, let us choose ρ =
(b− a)

2
max |(p(t)− α(t))| . Then, we obtain that

max |x(t)| ≤ (b− a)

2
ε+ ρ max |x(t)| ⇒ max |x(t)| ≤ (b− a)

2 (1− ρ)
ε.

Let us consider K =
(b− a)

2 (1− ρ)
. So, we have max |x(t)| ≤ Kε. Obviously, y0(t) ≡ 0 is a solution of

the differential equation x′(t) − (p(t)− α(t))x(t) = 0 with boundary conditions x(a) = x(b) = 0.

Therefore,

|x(t)− y0(t)| ≤ Kε.

Hence by the virtue of Definition 2 the differential equation (1) has the Hyers-Ulam stability with

boundary conditions (2). �

The following corollaries shows that the Hyers-Ulam-Rassias stability of the first order linear

differential equation (1) with boundary conditions (2). Use the same approach of Theorem 6, we

can easily prove the following corollary.

When we replace ε by φ(t)ε and Kε by Kφ(t)ε in Theorem 6, we arrive the result. But for the

sake of completion, we include some part of the proof.

Corollary 1. If max |p(t)− α(t)| < 2

(b− a)
for t ∈ [a, b]. For every ε > 0, there exists a positive

constant K such that x ∈ C([a, b]) satisfying the inequality

|x′(t) + (p(t)− α(t))x(t)| ≤ φ(t)ε,

with boundary conditions x(a) = x(b) = 0, then there exists some y ∈ C([a, b]) satisfies the

differential equations

y′(t) + (p(t)− α(t)) y(t) = 0

with y(a) = y(b) = 0, such that |x(t)− y(t)| ≤ Kφ(t)ε.

Proof. Given that, for every ε > 0, there exists x ∈ C([a, b]), such that

|x′(t) + (p(t)− α(t))x(t)| ≤ εφ(t),

with x(a) = x(b) = 0. Let us define M = max {|x(t)| : t ∈ [a, b]}. Since x(a) = x(b) = 0, there

exists t0 ∈ (a, b) such that |x(t0)| = M . By Taylor’s series formula, we have

x(a) = x(t0) + x′(ξ)(t0 − a) (7)

x(b) = x(t0) + x′(ξ)(b− t0) (8)

We have x(a) = 0, and so equation (3) becomes

x(t0) + x′(ξ)(t0 − a) = 0.
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Thus, we have |x′(ξ)| = M

(t0 − a)
. Similarly, from x(b) = 0 the relation (8) gives that

x(t0) + x′(ξ)(b− t0) = 0.

So, we have |x′(ξ)| = M

(b− t0)
. On the other hand, for t0 ∈ (a, a+b2 ], we obtain

M

(t0 − a)
≥ M

(b− a)

2

=
2M

(b− a)
. (9)

Now, if t0 ∈ [a+b2 , b), then

M

(t0 − b)
≥ M

(b− a)

2

=
2M

(b− a)
. (10)

Using (9) and (10), we have max |x(t)| ≤ (b− a)

2
max |x′(t)| . Hence,

max |x(t)| ≤ (b− a)

2
{ max |x′(t) + (p(t)− α(t))x(t)− (p(t)− α(t))x(t)|}

≤ (b− a)

2
{max |x′(t) + (p(t)− α(t))x(t)|+ max |(p(t)− α(t))| max |x(t)|} .

Now, let us choose ρ =
(b− a)

2
max |(p(t)− α(t))| . Then, we obtain that

max |x(t)| ≤ (b− a)

2
εφ(t) + ρ max |x(t)| ⇒ max |x(t)| ≤ (b− a)

2 (1− ρ)
εφ(t).

Consider K =
(b− a)

2 (1− ρ)
. So, we have max |x(t)| ≤ Kφ(t)ε. Obviously, y0(t) ≡ 0 is a solution of the

differential equation

x′(t)− (p(t)− α(t))x(t) = 0

with boundary conditions x(a) = x(b) = 0. Therefore,

|x(t)− y0(t)| ≤ Kφ(t)ε.

Hence by the virtue of Definition 2 the differential equation (1) has the Hyers-Ulam stability with

boundary conditions (2).

Then by the virtue of the Definition 4, the first order differential equation (1) has the Hyers-Ulam-Rassias

stability with boundary conditions (2). �

Finally, we are going to study the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the

linear differential equation (1) with initial conditions.

Theorem 7. If max |(p(t)− α(t))| < 1!

(b− a)
for t ∈ [a, b]. Then the differential equation (1) has

the Hyers-Ulam stability with initial condition.
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Proof. For every ε > 0, there exists x ∈ C([a, b]), such that

|x′(t) + (p(t)− α(t))x(t)| ≤ ε.

By Taylor’s formula, we arrive at

x(t) = x(a) +
x′(ζ)

1!
(t− a) (11)

Using the initial condition x(a) = 0, then (11) becomes x(t) = x′(ζ)(t− a) and thus

max |x(t)| ≤ max |x′(t)| (b− a)

so, we obtain

max |x(t)| ≤ (b− a)

1!
{max |x′(t) + (p(t)− α(t))x(t)− (p(t)− α(t))x(t)|}

≤ (b− a)

1!
{max |x′(t) + (p(t)− α(t))x(t)|+ max |(p(t)− α(t))| max |x(t)|} .

Let us choose η =
(b− a)

1!
max |(p(t)− α(t))| . Then

max |x(t)| ≤ (b− a)

1!
ε+ η max |x(t)| .

Hence, we have max |x(t)| ≤ K ε, where

K =
(b− a)

1! (1− η)
.

Hence, max |x(t)| ≤ Kε. It is clear that y0(t) ≡ 0 is a solution of the differential equation

x′(t)− (p(t)− α(t))x(t) = 0

with the initial conditions y(a) = 0. Thus,

|x(t)− y0(t)| ≤ Kε.

Therefore, by the virtue of Definition 3 the differential equation (1) has the Hyers-Ulam stability

with initial conditions. �

The following corollaries shows that the Hyers-Ulam-Rassias stability of the first order linear

differential equation (1) with initial conditions. By the similar manner of Theorem 7, we can easily

prove the following corollary.

Corollary 2. If max |p(t)− α(t)| < 1!

(b− a)
for t ∈ [a, b]. For every ε > 0, there exists a positive

constant K such that x ∈ C([a, b]) satisfying the inequality

|x′(t) + (p(t)− α(t))x(t)| ≤ φ(t)ε,

with initial condition x(a) = 0, then there exists some y ∈ C([a, b]) satisfies the differential equations

y′(t) + (p(t)− α(t)) y(t) = 0

with initial condition y(a) = 0, such that |x(t)− y(t)| ≤ Kφ(t)ε.

Proof. When we replace ε by φ(t)ε and Kε by Kφ(t)ε in Theorem 7, we arrive the result. �
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If the above corollary holds good, then by the virtue of the Definition 5, the first order differential

equation (1) has the Hyers-Ulam-Rassias stability with initial condition.

4. Conclusion

In this paper, we proved the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the

special type linear differential equations of first order with initial and boundary conditions using

Taylor’s series formula. This paper provides another method to study Ulam stability for first order

differential equations.
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