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Abstract. In this article, we introduce the radical quadratic functional equation. Also, we obtain

their general solution and investigate the generalized Hyers-Ulam-Rassias stability in Modular

spaces using fixed point concept.

1. Introduction

Ulam [12] raised the infamous stability problem of functional equations in 1940 at the University

of Wisconsin. The solution for the Ulam problem garnered world wide attention and finally came

to be identified as generalized Hyers-Ulam, generalized Hyers-Ulam-Rassias, Ulam-Găvruta-Rassias

and JMR stabilities of functional equations. One can refer ([2], [4], [6], [10], [9], [11]).

In the probabilistic normed spaces, Mohammad Bagher Ghaemi et al. [5] analyzed the stability

for the sextic and quintic mappings.

In the quasi-β-normed spaces via fixed point method, Tian Zhou Xu et al. [14] introduced the

following functional equation of quintic type

g(m+ 3n)− 5g(m+ 2n) + 10g(m+ n)− 10g(m)

+ 5g(m− n)− g(m− 2n) = 120g(n)

and sextic type

g(m+ 3n)− 6g(m+ 2n) + 15g(m+ n)− 20g(m) + 15g(m− n)

− 6g(m− 2n) + g(m− 3n) = 720g(n)

and also investigated their stabilities related to Ulam problem.
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In Felbin spaces, Pasupathi Narasimman et al. [8] introduced generalized sextic and quintic

functional equations

g(am+ n) + g(am− n) + g(m+ an) + g(m− an)

= (a4 + a2)[g(m+ n) + g(m− n)] + 2(a6 − a4 − a2 + 1)[g(m) + g(n)]

a[g(am+ n) + g(am− n)] + g(m+ an) + g(m− an)

= (a4 + a2)[g(m+ n) + g(m− n)] + 2(a6 − a4 − a2 + 1)g(m)

with general solution and stability for a ∈ R− {0,±1}.
Using fixed point theory, Zamani Eskandani and John Michael Rassias [15], Kittipong Wongkum

[13] are obtained modular stability of γ−quartic and cubic functional equations.

In quasi-β-normed spaces, In Goo Cho et al. [3] analyzed the Ulam stability problem for the

quintic functional equation of the form

2g(2m+ n) + 2g(2m− n) + g(m+ 2n) + g(m− 2n)

= 20[g(m+ n) + g(m− n)] + 90g(m).

In 2015, Abasalt Bodaghi et al.[1] analyzed the general solution and stability of a mixed type of

quintic-additive functional equation of the form

g(3m+ n)− 5g(2m+ n) + g(2m− n) + 10g(m+ n)− 5g(m− n)

= 10g(n) + 4g(2m)− 8g(m)

in real numbers.

Motivated from the above investigations on functional equations, in this paper we introduce the

following new radical quadratic functional equation

f(2x+ y) + f(2x− y) (1)

= 8f(x+ y) + 8f(x− y) + f(
√
x2 + y2)− 15f(

√
y2)− 9f(

√
x2).

Mainly we obtain its general solution and investigate stabilities related to Ulam problem in modular

spaces. The definitions related to modular space and fixed point theory to establish our main

theorem can be referred in [7].

The paper structured as follows: In Section-2, we obtain the general solution of the functional

equation (1). In Section-3, authors discuss generalized Hyers-Ulam-Rassias, Hyers-Ulam and Hyers-Ulam-Rassias

stabilities of quadratic functional equation in Modular spaces using fixed point theory. Finally the

conclusion given in section-4.

2. General solution of (1)

Theorem 1. Let X and Y be real vector spaces. If a function f : X → Y satisfies the functional

equation (1) for all x, y ∈ X, then f : X → Y is even and quadratic.

Suppose a function f : X → Y satisfies (1). Putting x = y = 0 in (1), we get f(0) = 0. Let

y = 0 in (1), we obtain

f(2x) = 4f(x) (1)
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for all x ∈ X. Let x = 0 in (1), we obtain

f(−y) = f(y) (2)

for all y ∈ X. Hence, f : X → Y is even. Setting (x, y) = (x, x) and using (1), we obtain

f(3x) = 9f(x) (3)

for all x ∈ X. From (1) and (3), we arrive

f(nx) = n2f(x) (4)

for all x ∈ X. Hence, f : X → Y is quadratic.

3. Stability of Functional Equation(1)

In this section, we determine the generalized Hyers-Ulam stability concerning the radical quadratic

functional equation (1) in Modular Spaces by using fixed point theory.

For mapping ρ : M → Xξ, consider

Dqf(x, y) := f(2x+ y) + f(2x− y)

− 8f(x+ y)− 8f(x− y)− f(
√
x2 + y2) + 15f(

√
y2) + 9f(

√
x2)

for all x, y ∈M.

Theorem 2. Consider a mapping ρ : M2 → [0,+∞) such that

lim
n→∞

1

22n
2ρ{2nx, 2ny} = 0, (1)

and

ρ{2x, 2y} ≤ 22ψρ{x, y},∀x, y ∈M, (2)

for ψ < 1. If f : M → Xξ fulfill the inequality

ξ (Dqf(x, y)) ≤ ρ(x, y), (3)

∀x, y ∈M . Then Q : M → Xξ a unique quadratic mapping exists, such that

ξ(Q(x)− f(x)) ≤ 1

23(1− ψ)
ρ(x, 0), ∀x ∈M. (4)

Where M is linear space and Xξ is modular space which is complete with Fatou property.

Proof. Consider N = ξ′ and define ξ′ on N as,

ξ′(q) =: inf{2 > 0 : ξ(f(y)) ≤ 2ρ(x, 0),∀x ∈M}.

One can easily prove ξ′ is convex modular with Fatou property on N and Nξ′ is ξ−complete, see

[15]. Consider the function σ : Nξ′ → Nξ′ defined by

σf(x) =
1

22
f(2x), (5)

for all x ∈M . Let p, r ∈ Nξ′ and a ∈ [0, 1] with ξ′(p− r) < a. By definition of ξ′, we get

ξ(p(x)− r(x)) ≤ 2ρ(x, 0) (6)
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for all x ∈M . By (2) and (6), we obtain

ξ

(
p(2x)

22
− r(2x)

22

)
≤ 1

22
ξ(p(2x)− r(2x)) ≤ 1

22
2ρ(2x, 0) ≤ 2ψρ(x, 0),

for all x ∈M . Hence, σ is a ξ′−contraction. From (3), we obtain

ξ

(
f(2x)

22
− f(x)

)
≤ 1

23
ρ(x, 0), (7)

for all x ∈M . Substituting x by 2x in (7), we get

ξ

(
f(22x)

22
− f(2x)

)
≤ ρ(2x, 0)

23
, ∀x ∈M. (8)

We obtain from (7) and (8) that

ξ

(
f(22x)

24
− f(x)

)
(9)

≤ ξ
(
f(22x)

24
− f(2x)

22

)
+ ξ

(
f(2x)

22
− f(x)

)
≤ 1

25
ρ(2x, 0) +

1

23
ρ(x, 0), ∀x ∈M.

We get by induction,

ξ

(
f(2nx)

22n
− f(x)

)
≤

n∑
i=1

1

2 · 22i
ρ(2i−1x, 0)

≤ 1

ψ23
ρ(x, 0)

n∑
i=1

ψi

≤ 1

23(1− ψ)
ρ(x, 0), ∀x ∈M. (10)

We obtain from (10),

ξ

(
f(2nx)

22n
− f(2sx)

22s

)
≤ 1

2
ξ

(
2
f(2nx)

22n
− 2f(x)

)
+

1

2
ξ

(
2
f(2sx)

22s
− 2f(x)

)
(11)

≤ κ

2
ξ

(
f(2nx)

22n
− f(x)

)
+
κ

2
ξ

(
f(2sx)

22s
− f(x)

)
≤ κ

23(1− ψ)
ρ(x, 0), ∀x ∈M

where n, s ∈ N. Thus

ξ′(σnf − σsf) ≤ κ

23(1− ψ)
,

hence the boundedness exists of an orbit of σ at f . {τnf} is ξ′−converges to Q ∈ Nξ′ by Theorem

1.5 in [15]. By ξ′−contractivity of σ, we get

ξ′(σnf − σQ) ≤ ψξ′(σn−1f −Q).
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Allowing n→∞ and by Fatou property of ξ′, we get

ξ′(σQ−Q) ≤ lim
n→∞

inf ξ′(σQ− σnf)

≤ ψ lim
n→∞

inf ξ′(Q− σn−1f) = 0.

Hence, Q is a fixed point of σ. In (3), changing (x, y) by (2nx, 2ny), we obtain

ξ

(
1

22n
Df(2nx, 2ny)

)
≤ 1

22n
ρ(2nx, 2ny), ∀x, y ∈M. (12)

By Theorem 1 and allowing n→∞, Q is quadratic and using (10), we arrive (4). For the uniqueness

of Q, consider another quadratic mapping D : M → Xξ satisfying (4). So that, Q is fixed point of

σ.

ξ′(Q−D) = ξ′(σQ− σD) ≤ ψξ′(Q−D). (13)

From (13), we get Q = D. Hence the proof. �

Proof of following Corollaries 1 and 2 follows that, all normed space implies modular space of

modular ξ(x) = ‖x‖.

Corollary 1. Assume ρ is a mapping from M2 to [0,+∞) for

lim
n→∞

1

22n
ρ{2nx, 2ny} = 0, (14)

and

ρ{2x, 2y} ≤ 22ψρ{x, y}, ∀x, y ∈M, ψ < 1. (15)

If f : M → X satisfies the condition for X is Banach space

‖Dqf(x, y)‖ ≤ ρ(x, y), (16)

∀x, y ∈M . Then a unique Q : M → X quadratic mapping exists, hence

‖Q(x)− f(x)‖ ≤ ρ(x, 0)

23(1− ψ)
, (17)

for all x ∈M .

Theorem 3. Assume that,

lim
n→∞

κ2nρ
( x

2n
,
y

2n

)
= 0, (18)

where ρ is a mapping from M2 to [0,+∞) and

ρ
(x

2
,
y

2

)
≤ ψ

23
ρ{x, y}, ∀x, y ∈M,ψ < 1. (19)

If f : M → Xξ fulfills the inequality

ξ (Dqf(x, y)) ≤ ρ(x, y), (20)

∀x, y ∈M . Then a unique Q : M → Xξ quadratic mapping exists, such that

ξ(Q(x)− f(x)) ≤ ψ

23(1− ψ)
ρ(x, 0), ∀x ∈M. (21)
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Proof. Considering x by x
2 in (5) of Theorem 2 and proceeding similar to that of Theorem 2, we

complete the proof. �

Corollary 2. Assume that,

lim
n→∞

σ2nρ
( x

2n
,
y

2n

)
= 0, (22)

where ρ is a mapping from M2 to [0,+∞) and

ρ
(x

2
,
y

2

)
≤ ψ

22
ρ{x, y}, ∀x, y ∈M,ψ < 1. (23)

If f : M → X fulfills the inequality

‖Dqf(x, y)‖ ≤ ρ(x, y), (24)

∀x, y ∈M . Then a unique Q : M → X quadratic mapping exists, such that

‖Q(x)− f(x)‖ ≤ ψ

23(1− ψ)
ρ(x, 0), ∀x ∈M. (25)

Using Corollaries 1 and 2, the Hyers-Ulam and generalized Hyers-Ulam stabilities of (1) are

obtain in the following corollaries.

Corollary 3. Assume ρ is a mapping from M2 to [0,+∞), X be a Banach space and ε ≥ 0 be a

real number such that

lim
n→∞

1

22n
ρ{2nx, 2ny} = 0, (26)

and

ρ{2x, 2y} ≤ 22ψρ{x, y}, ∀x, y ∈M,ψ < 1. (27)

If f : M → X fulfills

‖Dqf(x, y)‖ ≤ ε, (28)

∀x, y ∈ M . Then a unique Q : M → X quadratic mapping exists and defined by Q(x) =

limn→∞
f(2nx)
22n so that

‖Q(x)− f(x)‖ ≤ ε

2(22 − 1)
, (29)

for all x ∈M and a 6= 0,±1.

Corollary 4. If f : M → X fulfills the inequality for M and X are linear space and Banach space,

respectively.

‖Dqf(x, y)‖ ≤ ε (‖x‖p + ‖y‖q) , (30)

∀x, y ∈ M with 0 ≤ p, q < 2 or p, q > 2 for some ε ≥ 0. Then a unique quadratic mapping

Q : M → X exists and defined by Q(x) = limn→∞
f(2nx)
22n , so that

‖Q(x)− f(x)‖ ≤ ε

|2(22 − 2p)|
‖x‖p , ∀x ∈M. (31)
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4. Conclusion

Mainly, we introduced new radical quadratic functional equation with its general solution and

investigated generalized Hyers-Ulam stability in Modular Spaces by using fixed point theory.
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